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Preface

For some time now I've been floating the idea of writing a
book about category theory that would be targeted at pro-
grammers. Mind you, not computer scientists but program-
mers — engineers rather than scientists. I know this sounds
crazy and I am properly scared. I can’t deny that there is a
huge gap between science and engineering because I have
worked on both sides of the divide. But I've always felt a
very strong compulsion to explain things. I have tremen-
dous admiration for Richard Feynman who was the master
of simple explanations. I know I'm no Feynman, but I will
try my best. I'm starting by publishing this preface — which
is supposed to motivate the reader to learn category theory
— in hopes of starting a discussion and soliciting feedback.

WILL ATTEMPT, in the space of a few paragraphs, to convince you that

this book is written for you, and whatever objections you might have
to learning one of the most abstract branches of mathematics in your
“copious spare time” are totally unfounded.

You may also watch me teach this material to a live audience, at
https://goo.gl/GT2UWU (or search “bartosz milewski category theory” on YouTube.)

X1
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My optimism is based on several observations. First, category the-
ory is a treasure trove of extremely useful programming ideas. Haskell
programmers have been tapping this resource for a long time, and the
ideas are slowly percolating into other languages, but this process is too
slow. We need to speed it up.

Second, there are many different kinds of math, and they appeal to
different audiences. You might be allergic to calculus or algebra, but it
doesn’t mean you won’t enjoy category theory. I would go as far as to
argue that category theory is the kind of math that is particularly well
suited for the minds of programmers. That’s because category theory
— rather than dealing with particulars — deals with structure. It deals
with the kind of structure that makes programs composable.

Composition is at the very root of category theory — it’s part of
the definition of the category itself. And I will argue strongly that com-
position is the essence of programming. We’ve been composing things
forever, long before some great engineer came up with the idea of a sub-
routine. Some time ago the principles of structural programming rev-
olutionized programming because they made blocks of code compos-
able. Then came object oriented programming, which is all about com-
posing objects. Functional programming is not only about composing
functions and algebraic data structures — it makes concurrency com-
posable — something that’s virtually impossible with other program-
ming paradigms.

Third, I have a secret weapon, a butcher’s knife, with which I will
butcher math to make it more palatable to programmers. When you’re a
professional mathematician, you have to be very careful to get all your
assumptions straight, qualify every statement properly, and construct
all your proofs rigorously. This makes mathematical papers and books
extremely hard to read for an outsider. I'm a physicist by training, and in

xii



physics we made amazing advances using informal reasoning. Mathe-
maticians laughed at the Dirac delta function, which was made up on the
spot by the great physicist P. A. M. Dirac to solve some differential equa-
tions. They stopped laughing when they discovered a completely new
branch of calculus called distribution theory that formalized Dirac’s in-
sights.

Of course when using hand-waving arguments you run the risk of
saying something blatantly wrong, so I will try to make sure that there
is solid mathematical theory behind informal arguments in this book. I
do have a worn-out copy of Saunders Mac Lane’s Category Theory for
the Working Mathematician on my nightstand.

Since this is category theory for programmers 1 will illustrate all ma-
jor concepts using computer code. You are probably aware that func-
tional languages are closer to math than the more popular imperative
languages. They also offer more abstracting power. So a natural temp-
tation would be to say: You must learn Haskell before the bounty of cat-
egory theory becomes available to you. But that would imply that cate-
gory theory has no application outside of functional programming and
that’s simply not true. So I will provide a lot of C++ examples. Granted,
you’ll have to overcome some ugly syntax, the patterns might not stand
out from the background of verbosity, and you might be forced to do
some copy and paste in lieu of higher abstraction, but that’s just the lot
of a C++ programmer.

But you’re not off the hook as far as Haskell is concerned. You don’t
have to become a Haskell programmer, but you need it as a language
for sketching and documenting ideas to be implemented in C++. That’s
exactly how I got started with Haskell. I found its terse syntax and pow-
erful type system a great help in understanding and implementing C++
templates, data structures, and algorithms. But since I can’t expect the
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readers to already know Haskell, I will introduce it slowly and explain
everything as I go.

If you’re an experienced programmer, you might be asking yourself:
I've been coding for so long without worrying about category theory
or functional methods, so what’s changed? Surely you can’t help but
notice that there’s been a steady stream of new functional features in-
vading imperative languages. Even Java, the bastion of object-oriented
programming, let the lambdas in. C++ has recently been evolving at a
frantic pace — a new standard every few years — trying to catch up with
the changing world. All this activity is in preparation for a disruptive
change or, as we physicists call it, a phase transition. If you keep heat-
ing water, it will eventually start boiling. We are now in the position of
a frog that must decide if it should continue swimming in increasingly
hot water, or start looking for some alternatives.

One of the forces that are driving the big change is the multicore revolu-
tion. The prevailing programming paradigm, object oriented program-
ming, doesn’t buy you anything in the realm of concurrency and paral-
lelism, and instead encourages dangerous and buggy design. Data hid-
ing, the basic premise of object orientation, when combined with shar-
ing and mutation, becomes a recipe for data races. The idea of combining

Xiv



a mutex with the data it protects is nice but, unfortunately, locks don’t
compose, and lock hiding makes deadlocks more likely and harder to
debug.

But even in the absence of concurrency, the growing complexity
of software systems is testing the limits of scalability of the imperative
paradigm. To put it simply, side effects are getting out of hand. Granted,
functions that have side effects are often convenient and easy to write.
Their effects can in principle be encoded in their names and in the com-
ments. A function called SetPassword or WriteFile is obviously mutat-
ing some state and generating side effects, and we are used to dealing
with that. It’s only when we start composing functions that have side
effects on top of other functions that have side effects, and so on, that
things start getting hairy. It’s not that side effects are inherently bad —
it’s the fact that they are hidden from view that makes them impossi-
ble to manage at larger scales. Side effects don’t scale, and imperative
programming is all about side effects.

Changes in hardware and the growing complexity of software are
forcing us to rethink the foundations of programming. Just like the
builders of Europe’s great gothic cathedrals we’ve been honing our
craft to the limits of material and structure. There is an unfinished
gothic cathedral in Beauvais?, France, that stands witness to this deeply
human struggle with limitations. It was intended to beat all previous
records of height and lightness, but it suffered a series of collapses. Ad
hoc measures like iron rods and wooden supports keep it from disin-
tegrating, but obviously a lot of things went wrong. From a modern
perspective, it’s a miracle that so many gothic structures had been suc-
cessfully completed without the help of modern material science, com-
puter modelling, finite element analysis, and general math and physics.

thtp: //en.wikipedia.org/wiki/Beauvais_Cathedral
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Ad hoc measures preventing the Beauvais cathedral from collapsing.

I hope future generations will be as admiring of the programming skills
we’'ve been displaying in building complex operating systems, web
servers, and the internet infrastructure. And, frankly, they should, be-
cause we’ve done all this based on very flimsy theoretical foundations.
We have to fix those foundations if we want to move forward.
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Part One



Category: The Essence of Composition

CATEGORY is an embarrassingly simple concept. A category consists

of objects and arrows that go between them. That’s why categories
are so easy to represent pictorially. An object can be drawn as a circle or
a point, and an arrow... is an arrow. (Just for variety, I will occasionally
draw objects as piggies and arrows as fireworks.) But the essence of a
category is composition. Or, if you prefer, the essence of composition is
a category. Arrows compose, so if you have an arrow from object A to
object B, and another arrow from object B to object C, then there must
be an arrow — their composition — that goes from A to C.

Arrows as Functions

Is this already too much abstract nonsense? Do not despair. Let’s talk
concretes. Think of arrows, which are also called morphisms, as func-
tions. You have a function f that takes an argument of type A and re-
turns a B. You have another function g that takes a B and returns a C.



In a category, if there is an arrow going from A to B and an arrow going from B to C then there
must also be a direct arrow from A to C that is their composition. This diagram is not a full category
because it’s missing identity morphisms (see later).

You can compose them by passing the result of f to g. You have just
defined a new function that takes an A and returns a C.

In math, such composition is denoted by a small circle between
functions: g » f. Notice the right to left order of composition. For some
people this is confusing. You may be familiar with the pipe notation in
Unix, as in:

lsof | grep Chrome

or the chevron >> in F#, which both go from left to right. But in math-
ematics and in Haskell functions compose right to left. It helps if you
read g o f as “g after £

Let’s make this even more explicit by writing some C code. We have
one function f that takes an argument of type A and returns a value of

type B:

B f(A a);

and another:



C g(B b);
Their composition is:

C g_after_f(A a)

{
return g(f(a));

Here, again, you see right-to-left composition: g(f(a)); this time in C.

I'wishIcould tell you that there is a template in the C++ Standard Li-
brary that takes two functions and returns their composition, but there
isn’t one. So let’s try some Haskell for a change. Here’s the declaration
of a function from A to B:

f:: A->B
Similarly:
g:: B->C

Their composition is:

g . f

Once you see how simple things are in Haskell, the inability to express
straightforward functional concepts in C++ is a little embarrassing. In
fact, Haskell will let you use Unicode characters so you can write com-
position as:



You can even use Unicode double colons and arrows:
f:tA->B

So here’s the first Haskell lesson: Double colon means “has the type of..”
A function type is created by inserting an arrow between two types.
You compose two functions by inserting a period between them (or a
Unicode circle).

Properties of Composition

There are two extremely important properties that the composition in
any category must satisfy.

1. Composition is associative. If you have three morphisms, f, g, and
h, that can be composed (that is, their objects match end-to-end),
you don’t need parentheses to compose them. In math notation
this is expressed as:

he(gef)=(heg)ef=hogef

In (pseudo) Haskell:
f:: A->B
g:: B—>C
h::C->D
h.(g.f)=(Bh.g .f== .g . f



(I said “pseudo,” because equality is not defined for functions.)

Associativity is pretty obvious when dealing with functions, but
it may be not as obvious in other categories.

2. For every object A there is an arrow which is a unit of compo-
sition. This arrow loops from the object to itself. Being a unit of
composition means that, when composed with any arrow that ei-
ther starts at A or ends at A, respectively, it gives back the same
arrow. The unit arrow for object A is called id 4 (identity on A).
In math notation, if f goes from A to B then

foidy=f

and

idgef=f

When dealing with functions, the identity arrow is implemented as the
identity function that just returns back its argument. The implementa-
tion is the same for every type, which means this function is universally
polymorphic. In C++ we could define it as a template:

template<class T> T id(T x) { return x; }

Of course, in C++ nothing is that simple, because you have to take into
account not only what you’re passing but also how (that is, by value, by
reference, by const reference, by move, and so on).

In Haskell, the identity function is part of the standard library (called
Prelude). Here’s its declaration and definition:

id :: a > a
id x = x



As you can see, polymorphic functions in Haskell are a piece of cake. In
the declaration, you just replace the type with a type variable. Here’s the
trick: names of concrete types always start with a capital letter, names
of type variables start with a lowercase letter. So here a stands for all
types.

Haskell function definitions consist of the name of the function fol-
lowed by formal parameters — here just one, x. The body of the function
follows the equal sign. This terseness is often shocking to newcomers
but you will quickly see that it makes perfect sense. Function definition
and function call are the bread and butter of functional programming
so their syntax is reduced to the bare minimum. Not only are there no
parentheses around the argument list but there are no commas between
arguments (you’ll see that later, when we define functions of multiple
arguments).

The body of a function is always an expression — there are no state-
ments in functions. The result of a function is this expression — here,
just x.

This concludes our second Haskell lesson.

The identity conditions can be written (again, in pseudo-Haskell) as:

f.id=="f
id . f==f

You might be asking yourself the question: Why would anyone bother
with the identity function — a function that does nothing? Then again,
why do we bother with the number zero? Zero is a symbol for nothing.
Ancient Romans had a number system without a zero and they were
able to build excellent roads and aqueducts, some of which survive to
this day.



Neutral values like zero or id are extremely useful when working
with symbolic variables. That’s why Romans were not very good at al-
gebra, whereas the Arabs and the Persians, who were familiar with the
concept of zero, were. So the identity function becomes very handy as
an argument to, or a return from, a higher-order function. Higher order
functions are what make symbolic manipulation of functions possible.
They are the algebra of functions.

To summarize: A category consists of objects and arrows (mor-
phisms). Arrows can be composed, and the composition is associative.
Every object has an identity arrow that serves as a unit under compo-
sition.

Composition is the Essence of Programming

Functional programmers have a peculiar way of approaching problems.
They start by asking very Zen-like questions. For instance, when de-
signing an interactive program, they would ask: What is interaction?
When implementing Conway’s Game of Life, they would probably pon-
der about the meaning of life. In this spirit, I'm going to ask: What is
programming? At the most basic level, programming is about telling
the computer what to do. “Take the contents of memory address x and
add it to the contents of the register EAX” But even when we program
in assembly, the instructions we give the computer are an expression of
something more meaningful. We are solving a non-trivial problem (if it
were trivial, we wouldn’t need the help of the computer). And how do
we solve problems? We decompose bigger problems into smaller prob-
lems. If the smaller problems are still too big, we decompose them fur-
ther, and so on. Finally, we write code that solves all the small problems.
And then comes the essence of programming: we compose those pieces



of code to create solutions to larger problems. Decomposition wouldn’t
make sense if we weren’t able to put the pieces back together.

This process of hierarchical decomposition and recomposition is not
imposed on us by computers. It reflects the limitations of the human
mind. Our brains can only deal with a small number of concepts at a
time. One of the most cited papers in psychology, The Magical Num-
ber Seven, Plus or Minus Two!, postulated that we can only keep 7 + 2
“chunks” of information in our minds. The details of our understand-
ing of the human short-term memory might be changing, but we know
for sure that it’s limited. The bottom line is that we are unable to deal
with the soup of objects or the spaghetti of code. We need structure not
because well-structured programs are pleasant to look at, but because
otherwise our brains can’t process them efficiently. We often describe
some piece of code as elegant or beautiful, but what we really mean is
that it’s easy to process by our limited human minds. Elegant code cre-
ates chunks that are just the right size and come in just the right number
for our mental digestive system to assimilate them.

So what are the right chunks for the composition of programs? Their
surface area has to increase slower than their volume. (I like this anal-
ogy because of the intuition that the surface area of a geometric object
grows with the square of its size — slower than the volume, which grows
with the cube of its size.) The surface area is the information we need
in order to compose chunks. The volume is the information we need in
order to implement them. The idea is that, once a chunk is implemented,
we can forget about the details of its implementation and concentrate
on how it interacts with other chunks. In object-oriented programming,
the surface is the class declaration of the object, or its abstract interface.

1http://en.wikipedia.org/wiki/The_Magical_Number_Seven,_Plus_or_
Minus_Two


http://en.wikipedia.org/wiki/The_Magical_Number_Seven,_Plus_or_Minus_Two
http://en.wikipedia.org/wiki/The_Magical_Number_Seven,_Plus_or_Minus_Two
http://en.wikipedia.org/wiki/The_Magical_Number_Seven,_Plus_or_Minus_Two
http://en.wikipedia.org/wiki/The_Magical_Number_Seven,_Plus_or_Minus_Two

In functional programming, it’s the declaration of a function. (I'm sim-
plifying things a bit, but that’s the gist of it.)

Category theory is extreme in the sense that it actively discourages
us from looking inside the objects. An object in category theory is an
abstract nebulous entity. All you can ever know about it is how it relates
to other objects — how it connects with them using arrows. This is how
internet search engines rank web sites by analyzing incoming and out-
going links (except when they cheat). In object-oriented programming,
an idealized object is only visible through its abstract interface (pure
surface, no volume), with methods playing the role of arrows. The mo-
ment you have to dig into the implementation of the object in order to
understand how to compose it with other objects, you've lost the ad-
vantages of your programming paradigm.

Challenges

1. Implement, as best as you can, the identity function in your fa-
vorite language (or the second favorite, if your favorite language
happens to be Haskell).

2. Implement the composition function in your favorite language. It
takes two functions as arguments and returns a function that is
their composition.

3. Write a program that tries to test that your composition function
respects identity.

4. Is the world-wide web a category in any sense? Are links mor-
phisms?

5. Is Facebook a category, with people as objects and friendships as
morphisms?

6. When is a directed graph a category?
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Types and Functions

HE CATEGORY OF TYPES AND FUNCTIONS plays an important role in
programming, so let’s talk about what types are and why we need
them.

Who Needs Types?

There seems to be some controversy about the advantages of static vs.
dynamic and strong vs. weak typing. Let me illustrate these choices with
a thought experiment. Imagine millions of monkeys at computer key-
boards happily hitting random keys, producing programs, compiling,
and running them.
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With machine language, any combination of bytes produced by mon-
keys would be accepted and run. But with higher level languages, we do
appreciate the fact that a compiler is able to detect lexical and grammat-
ical errors. Lots of monkeys will go without bananas, but the remain-
ing programs will have a better chance of being useful. Type checking
provides yet another barrier against nonsensical programs. Moreover,
whereas in a dynamically typed language, type mismatches would be
discovered at runtime, in strongly typed statically checked languages
type mismatches are discovered at compile time, eliminating lots of in-
correct programs before they have a chance to run.

So the question is, do we want to make monkeys happy, or do we
want to produce correct programs?

The usual goal in the typing monkeys thought experiment is the pro-
duction of the complete works of Shakespeare. Having a spell checker
and a grammar checker in the loop would drastically increase the odds.
The analog of a type checker would go even further by making sure
that, once Romeo is declared a human being, he doesn’t sprout leaves
or trap photons in his powerful gravitational field.

12



Types Are About Composability

Category theory is about composing arrows. But not any two arrows
can be composed. The target object of one arrow must be the same as
the source object of the next arrow. In programming we pass the re-
sults of one function to another. The program will not work if the tar-
get function is not able to correctly interpret the data produced by the
source function. The two ends must fit for the composition to work. The
stronger the type system of the language, the better this match can be
described and mechanically verified.

The only serious argument I hear against strong static type checking
is that it might eliminate some programs that are semantically correct.
In practice, this happens extremely rarely and, in any case, every lan-
guage provides some kind of a backdoor to bypass the type system when
that’s really necessary. Even Haskell has unsafeCoerce. But such de-
vices should be used judiciously. Franz Kafka’s character, Gregor Samsa,
breaks the type system when he metamorphoses into a giant bug, and
we all know how it ends.

Another argument I hear a lot is that dealing with types imposes too
much burden on the programmer. I could sympathize with this senti-
ment after having to write a few declarations of iterators in C++ myself,
except that there is a technology called type inference that lets the com-
piler deduce most of the types from the context in which they are used.
In C++, you can now declare a variable auto and let the compiler figure
out its type.

In Haskell, except on rare occasions, type annotations are purely
optional. Programmers tend to use them anyway, because they can tell a
lot about the semantics of code, and they make compilation errors easier
to understand. It’s a common practice in Haskell to start a project by
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designing the types. Later, type annotations drive the implementation
and become compiler-enforced comments.

Strong static typing is often used as an excuse for not testing the
code. You may sometimes hear Haskell programmers saying, “If it com-
piles, it must be correct” Of course, there is no guarantee that a type-
correct program is correct in the sense of producing the right output.
The result of this cavalier attitude is that in several studies Haskell didn’t
come as strongly ahead of the pack in code quality as one would expect.
It seems that, in the commercial setting, the pressure to fix bugs is ap-
plied only up to a certain quality level, which has everything to do with
the economics of software development and the tolerance of the end
user, and very little to do with the programming language or method-
ology. A better criterion would be to measure how many projects fall
behind schedule or are delivered with drastically reduced functionality.

As for the argument that unit testing can replace strong typing,
consider the common refactoring practice in strongly typed languages:
changing the type of an argument of a particular function. In a strongly
typed language, it’s enough to modify the declaration of that function
and then fix all the build breaks. In a weakly typed language, the fact
that a function now expects different data cannot be propagated to call
sites. Unit testing may catch some of the mismatches, but testing is al-
most always a probabilistic rather than a deterministic process. Testing
is a poor substitute for proof.

What Are Types?

The simplest intuition for types is that they are sets of values. The type
Bool (remember, concrete types start with a capital letter in Haskell) is
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a two-element set of True and False. Type Char is a set of all Unicode
characters like a or 3.

Sets can be finite or infinite. The type of String, which is a synonym
for a list of Char, is an example of an infinite set.

When we declare x to be an Integer:

X :: Integer

we are saying that it’s an element of the set of integers. Integer in
Haskell is an infinite set, and it can be used to do arbitrary precision
arithmetic. There is also a finite-set Int that corresponds to machine
type, just like the C++ int.

There are some subtleties that make this identification of types and
sets tricky. There are problems with polymorphic functions that involve
circular definitions, and with the fact that you can’t have a set of all sets;
but as I promised, I won’t be a stickler for math. The great thing is that
there is a category of sets, which is called Set, and we’ll just work with
it. In Set, objects are sets and morphisms (arrows) are functions.

Set is a very special category, because we can actually peek inside
its objects and get a lot of intuitions from doing that. For instance, we
know that an empty set has no elements. We know that there are spe-
cial one-element sets. We know that functions map elements of one set
to elements of another set. They can map two elements to one, but not
one element to two. We know that an identity function maps each ele-
ment of a set to itself, and so on. The plan is to gradually forget all this
information and instead express all those notions in purely categorical
terms, that is in terms of objects and arrows.

In the ideal world we would just say that Haskell types are sets and
Haskell functions are mathematical functions between sets. There is just
one little problem: A mathematical function does not execute any code
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— it just knows the answer. A Haskell function has to calculate the an-
swer. It’s not a problem if the answer can be obtained in a finite number
of steps — however big that number might be. But there are some cal-
culations that involve recursion, and those might never terminate. We
can’t just ban non-terminating functions from Haskell because distin-
guishing between terminating and non-terminating functions is unde-
cidable — the famous halting problem. That’s why computer scientists
came up with a brilliant idea, or a major hack, depending on your point
of view, to extend every type by one more special value called the bot-
tom and denoted by _|_, or Unicode L. This “value” corresponds to a
non-terminating computation. So a function declared as:

f :: Bool -> Bool

may return True, False, or _|_; the latter meaning that it would never
terminate.

Interestingly, once you accept the bottom as part of the type system,
it is convenient to treat every runtime error as a bottom, and even allow
functions to return the bottom explicitly. The latter is usually done using
the expression undefined, as in:

f :: Bool -> Bool
f x = undefined

This definition type checks because undefined evaluates to bottom,
which is a member of any type, including Bool. You can even write:

f :: Bool -> Bool
f = undefined

(without the x) because the bottom is also a member of the type Bool
-> Bool.

16



Functions that may return bottom are called partial, as opposed to
total functions, which return valid results for every possible argument.

Because of the bottom, you’ll see the category of Haskell types and
functions referred to as Hask rather than Set. From the theoretical point
of view, this is the source of never-ending complications, so at this point
I will use my butcher’s knife and terminate this line of reasoning. From
the pragmatic point of view, it’s okay to ignore non-terminating func-
tions and bottoms, and treat Hask as bona fide Set.!

Why Do We Need a Mathematical Model?

As a programmer you are intimately familiar with the syntax and gram-
mar of your programming language. These aspects of the language are
usually described using formal notation at the very beginning of the
language spec. But the meaning, or semantics, of the language is much
harder to describe; it takes many more pages, is rarely formal enough,
and almost never complete. Hence the never ending discussions among
language lawyers, and a whole cottage industry of books dedicated to
the exegesis of the finer points of language standards.

There are formal tools for describing the semantics of a language
but, because of their complexity, they are mostly used with simplified
academic languages, not real-life programming behemoths. One such
tool called operational semantics describes the mechanics of program
execution. It defines a formalized idealized interpreter. The semantics of
industrial languages, such as C++, is usually described using informal
operational reasoning, often in terms of an “abstract machine.”

INils Anders Danielsson, John Hughes, Patrik Jansson, Jeremy Gibbons, Fast and
Loose Reasoning is Morally Correct. This paper provides justification for ignoring bot-
toms in most contexts.
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The problem is that it’s very hard to prove things about programs
using operational semantics. To show a property of a program you es-
sentially have to “run it” through the idealized interpreter.

It doesn’t matter that programmers never perform formal proofs of
correctness. We always “think” that we write correct programs. Nobody
sits at the keyboard saying, “Oh, I'll just throw a few lines of code and
see what happens.” We think that the code we write will perform certain
actions that will produce desired results. We are usually quite surprised
when it doesn’t. That means we do reason about programs we write, and
we usually do it by running an interpreter in our heads. It’s just really
hard to keep track of all the variables. Computers are good at running
programs — humans are not! If we were, we wouldn’t need computers.

But there is an alternative. It’s called denotational semantics and it’s
based on math. In denotational semantics every programming construct
is given its mathematical interpretation. With that, if you want to prove
a property of a program, you just prove a mathematical theorem. You
might think that theorem proving is hard, but the fact is that we humans
have been building up mathematical methods for thousands of years, so
there is a wealth of accumulated knowledge to tap into. Also, as com-
pared to the kind of theorems that professional mathematicians prove,
the problems that we encounter in programming are usually quite sim-
ple, if not trivial.

Consider the definition of a factorial function in Haskell, which is a
language quite amenable to denotational semantics:

fact n = product [1..n]
The expression [1..n] is a list of integers from 1 to n. The function
product multiplies all elements of a list. That’s just like a definition of

factorial taken from a math text. Compare this with C:
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int fact(int n) {
int 1;
int result = 1;
for (i = 2; i <= n; ++i)
result x= i;
return result;

Need I say more?

Okay, I'll be the first to admit that this was a cheap shot! A facto-
rial function has an obvious mathematical denotation. An astute reader
might ask: What’s the mathematical model for reading a character from
the keyboard or sending a packet across the network? For the longest
time that would have been an awkward question leading to a rather con-
voluted explanation. It seemed like denotational semantics wasn’t the
best fit for a considerable number of important tasks that were essential
for writing useful programs, and which could be easily tackled by oper-
ational semantics. The breakthrough came from category theory. Euge-
nio Moggi discovered that computational effect can be mapped to mon-
ads. This turned out to be an important observation that not only gave
denotational semantics a new lease on life and made pure functional
programs more usable, but also shed new light on traditional program-
ming. 'll talk about monads later, when we develop more categorical
tools.

One of the important advantages of having a mathematical model
for programming is that it’s possible to perform formal proofs of cor-
rectness of software. This might not seem so important when you’re
writing consumer software, but there are areas of programming where
the price of failure may be exorbitant, or where human life is at stake.
But even when writing web applications for the health system, you may
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appreciate the thought that functions and algorithms from the Haskell
standard library come with proofs of correctness.

Pure and Dirty Functions

The things we call functions in C++ or any other imperative language,
are not the same things mathematicians call functions. A mathematical
function is just a mapping of values to values.

We can implement a mathematical function in a programming lan-
guage: Such a function, given an input value will calculate the output
value. A function to produce a square of a number will probably multi-
ply the input value by itself. It will do it every time it’s called, and it’s
guaranteed to produce the same output every time it’s called with the
same input. The square of a number doesn’t change with the phases of
the Moon.

Also, calculating the square of a number should not have a side ef-
fect of dispensing a tasty treat for your dog. A “function” that does that
cannot be easily modelled as a mathematical function.

In programming languages, functions that always produce the same
result given the same input and have no side effects are called pure func-
tions. In a pure functional language like Haskell all functions are pure.
Because of that, it’s easier to give these languages denotational seman-
tics and model them using category theory. As for other languages, it’s
always possible to restrict yourself to a pure subset, or reason about side
effects separately. Later we’ll see how monads let us model all kinds of
effects using only pure functions. So we really don’t lose anything by
restricting ourselves to mathematical functions.
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Examples of Types

Once you realize that types are sets, you can think of some rather exotic
types. For instance, what’s the type corresponding to an empty set? No,
it’s not C++ void, although this type is called Void in Haskell. It’s a type
that’s not inhabited by any values. You can define a function that takes
Void, but you can never call it. To call it, you would have to provide
a value of the type Void, and there just aren’t any. As for what this
function can return, there are no restrictions whatsoever. It can return
any type (although it never will, because it can’t be called). In other
words it’s a function that’s polymorphic in the return type. Haskellers
have a name for it:

absurd :: Void -> a

(Remember, a is a type variable that can stand for any type.) The name is
not coincidental. There is deeper interpretation of types and functions
in terms of logic called the Curry-Howard isomorphism. The type Void
represents falsity, and the type of the function absurd corresponds to
the statement that from falsity follows anything, as in the Latin adage
“ex falso sequitur quodlibet””

Next is the type that corresponds to a singleton set. It’s a type that
has only one possible value. This value just “is” You might not immedi-
ately recognize it as such, but that is the C++ void. Think of functions
from and to this type. A function from void can always be called. If it’s
a pure function, it will always return the same result. Here’s an example
of such a function:

int f44() { return 44; 3}

You might think of this function as taking “nothing”, but as we’ve just
seen, a function that takes “nothing” can never be called because there is

21



no value representing “nothing” So what does this function take? Con-
ceptually, it takes a dummy value of which there is only one instance
ever, so we don’t have to mention it explicitly. In Haskell, however,
there is a symbol for this value: an empty pair of parentheses, (). So,
by a funny coincidence (or is it a coincidence?), the call to a function of
void looks the same in C++ and in Haskell. Also, because of the Haskell’s
love of terseness, the same symbol () is used for the type, the construc-
tor, and the only value corresponding to a singleton set. So here’s this
function in Haskell:

f44 :: () -> Integer
f44 () = 44

The first line declares that 44 takes the type (), pronounced “unit,” into
the type Integer. The second line defines f44 by pattern matching the
only constructor for unit, namely (), and producing the number 44. You
call this function by providing the unit value ():

f44 ()

Notice that every function of unit is equivalent to picking a single el-
ement from the target type (here, picking the Integer 44). In fact you
could think of f44 as a different representation for the number 44. This
is an example of how we can replace explicit mention of elements of a
set by talking about functions (arrows) instead. Functions from unit to
any type A are in one-to-one correspondence with the elements of that
set A.

What about functions with the void return type, or, in Haskell, with
the unit return type? In C++ such functions are used for side effects, but
we know that these are not real functions in the mathematical sense of

22



the word. A pure function that returns unit does nothing: it discards its
argument.

Mathematically, a function from a set A to a singleton set maps ev-
ery element of A to the single element of that singleton set. For every
A there is exactly one such function. Here’s this function for Integer:

fInt :: Integer -> ()
fInt x = ()

You give it any integer, and it gives you back a unit. In the spirit of
terseness, Haskell lets you use the wildcard pattern, the underscore, for
an argument that is discarded. This way you don’t have to invent a name
for it. So the above can be rewritten as:

fInt :: Integer -> ()
fInt _ = ()

Notice that the implementation of this function not only doesn’t depend
on the value passed to it, but it doesn’t even depend on the type of the
argument.

Functions that can be implemented with the same formula for any
type are called parametrically polymorphic. You can implement a whole
family of such functions with one equation using a type parameter in-
stead of a concrete type. What should we call a polymorphic function
from any type to unit type? Of course we’ll call it unit:

unit :: a -> ()
unit _ = ()

In C++ you would write this function as:
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template<class T>
void unit(T) {}

Next in the typology of types is a two-element set. In C++ it’s called
bool and in Haskell, predictably, Bool. The difference is that in C++
bool is a built-in type, whereas in Haskell it can be defined as follows:

data Bool = True | False

(The way to read this definition is that Bool is either True or False.) In
principle, one should also be able to define a Boolean type in C++ as an
enumeration:

enum bool {
true,
false

3

but C++ enumis secretly an integer. The C++11 “enum class” could have
been used instead, but then you would have to qualify its values with the
class name, as in bool: : true and bool: : false, not to mention having
to include the appropriate header in every file that uses it.

Pure functions from Bool just pick two values from the target type,
one corresponding to True and another to False.

Functions to Bool are called predicates. For instance, the Haskell li-
brary Data.Char is full of predicates like isAlpha or isDigit. In C++
there is a similar library that defines, among others, isalpha and
isdigit, but these return an int rather than a Boolean. The actual pred-
icates are defined in std: : ctype and have the form ctype: :is(alpha,
c), ctype::is(digit, c), etc.
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Challenges

1. Define a higher-order function (or a function object) memoize in
your favorite language. This function takes a pure function f as
an argument and returns a function that behaves almost exactly
like f, except that it only calls the original function once for every
argument, stores the result internally, and subsequently returns
this stored result every time it’s called with the same argument.
You can tell the memoized function from the original by watch-
ing its performance. For instance, try to memoize a function that
takes a long time to evaluate. You’ll have to wait for the result
the first time you call it, but on subsequent calls, with the same
argument, you should get the result immediately.

2. Try to memoize a function from your standard library that you
normally use to produce random numbers. Does it work?

3. Most random number generators can be initialized with a seed.
Implement a function that takes a seed, calls the random number
generator with that seed, and returns the result. Memoize that
function. Does it work?

4. Which of these C++ functions are pure? Try to memoize them
and observe what happens when you call them multiple times:
memoized and not.

(a) The factorial function from the example in the text.
(b) std::getchar()
(c) bool f() {
std::cout << "Hello!" << std::endl;
return true;
}
(d) int f(int x) {

static int y = 0;
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y = X3
return y;

}

5. How many different functions are there from Bool to Bool? Can
you implement them all?

6. Draw a picture of a category whose only objects are the types
Void, () (unit), and Bool; with arrows corresponding to all pos-
sible functions between these types. Label the arrows with the
names of the functions.
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Categories Great and Small

OU CAN GET real appreciation for categories by studying a variety of
examples. Categories come in all shapes and sizes and often pop up
in unexpected places. We'll start with something really simple.

No Objects

The most trivial category is one with zero objects and, consequently,
zero morphisms. It’s a very sad category by itself, but it may be impor-
tant in the context of other categories, for instance, in the category of
all categories (yes, there is one). If you think that an empty set makes
sense, then why not an empty category?
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Simple Graphs

You can build categories just by connecting objects with arrows. You can
imagine starting with any directed graph and making it into a category
by simply adding more arrows. First, add an identity arrow at each node.
Then, for any two arrows such that the end of one coincides with the
beginning of the other (in other words, any two composable arrows),
add a new arrow to serve as their composition. Every time you add a
new arrow, you have to also consider its composition with any other
arrow (except for the identity arrows) and itself. You usually end up
with infinitely many arrows, but that’s okay.

Another way of looking at this process is that you’re creating a cat-
egory, which has an object for every node in the graph, and all possible
chains of composable graph edges as morphisms. (You may even con-
sider identity morphisms as special cases of chains of length zero.)

Such a category is called a free category generated by a given graph.
It’s an example of a free construction, a process of completing a given
structure by extending it with a minimum number of items to satisfy its
laws (here, the laws of a category). We’ll see more examples of it in the
future.

Orders

And now for something completely different! A category where a mor-
phism is a relation between objects: the relation of being less than or
equal. Let’s check if it indeed is a category. Do we have identity mor-
phisms? Every object is less than or equal to itself: check! Do we have
composition? If a < b and b < ¢ then a < c¢: check! Is composition as-
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sociative? Check! A set with a relation like this is called a preorder, so a
preorder is indeed a category.

You can also have a stronger relation, that satisfies an additional
condition that, if a < b and b < a then a must be the same as b. That’s
called a partial order.

Finally, you can impose the condition that any two objects are in a
relation with each other, one way or another; and that gives you a linear
order or total order.

Let’s characterize these ordered sets as categories. A preorder is a
category where there is at most one morphism going from any object a
to any object b. Another name for such a category is “thin.” A preorder
is a thin category.

A set of morphisms from object a to object b in a category C is called
a hom-set and is written as C(a, b) (or, sometimes, Homc(a, b)). So ev-
ery hom-set in a preorder is either empty or a singleton. That includes
the hom-set C(a, a), the set of morphisms from a to a, which must be a
singleton, containing only the identity, in any preorder. You may, how-
ever, have cycles in a preorder. Cycles are forbidden in a partial order.

It’s very important to be able to recognize preorders, partial orders,
and total orders because of sorting. Sorting algorithms, such as quick-
sort, bubble sort, merge sort, etc., can only work correctly on total or-
ders. Partial orders can be sorted using topological sort.

Monoid as Set

Monoid is an embarrassingly simple but amazingly powerful concept.
It’s the concept behind basic arithmetics: Both addition and multipli-
cation form a monoid. Monoids are ubiquitous in programming. They
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show up as strings, lists, foldable data structures, futures in concurrent
programming, events in functional reactive programming, and so on.
Traditionally, a monoid is defined as a set with a binary operation.
All that’s required from this operation is that it’s associative, and that
there is one special element that behaves like a unit with respect to it.
For instance, natural numbers with zero form a monoid under ad-
dition. Associativity means that:

(a+b)+c=a+ (b+c)

(In other words, we can skip parentheses when adding numbers.)
The neutral element is zero, because:

0O+a=a

and
a+0=a

The second equation is redundant, because addition is commutative (a+
b = b + a), but commutativity is not part of the definition of a monoid.
For instance, string concatenation is not commutative and yet it forms
a monoid. The neutral element for string concatenation, by the way, is
an empty string, which can be attached to either side of a string without
changing it.

In Haskell we can define a type class for monoids — a type for which
there is a neutral element called mempty and a binary operation called
mappend:

class Monoid m where

mempty :: m
mappend :: m =>m ->m
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The type signature for a two-argument function, m -> m -> m, might
look strange at first, but it will make perfect sense after we talk about
currying. You may interpret a signature with multiple arrows in two ba-
sic ways: as a function of multiple arguments, with the rightmost type
being the return type; or as a function of one argument (the leftmost
one), returning a function. The latter interpretation may be emphasized
by adding parentheses (which are redundant, because the arrow is right-
associative), as in: m -> (m -> m). We’ll come back to this interpreta-
tion in a moment.

Notice that, in Haskell, there is no way to express the monoidal
properties of mempty and mappend (i.e., the fact that mempty is neutral
and that mappend is associative). It’s the responsibility of the program-
mer to make sure they are satisfied.

Haskell classes are not as intrusive as C++ classes. When you’re
defining a new type, you don’t have to specify its class up front. You are
free to procrastinate and declare a given type to be an instance of some
class much later. As an example, let’s declare String to be a monoid by
providing the implementation of mempty and mappend (this is, in fact,
done for you in the standard Prelude):

instance Monoid String where

mempty =
mappend = (++)

Here, we have reused the list concatenation operator (++), because a
String is just a list of characters.

A word about Haskell syntax: Any infix operator can be turned into
a two-argument function by surrounding it with parentheses. Given
two strings, you can concatenate them by inserting ++ between them:
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"Hello " ++ "world!"

or by passing them as two arguments to the parenthesized (++):

(++) "Hello " "world!"

Notice that arguments to a function are not separated by commas or
surrounded by parentheses. (This is probably the hardest thing to get
used to when learning Haskell.)

It’s worth emphasizing that Haskell lets you express equality of
functions, as in:

mappend = (++)

Conceptually, this is different than expressing the equality of values
produced by functions, as in:

mappend s1 s2 = (++) sl s2

The former translates into equality of morphisms in the category Hask
(or Set, if we ignore bottoms, which is the name for never-ending cal-
culations). Such equations are not only more succinct, but can often be
generalized to other categories. The latter is called extensional equal-
ity, and states the fact that for any two input strings, the outputs of
mappend and (++) are the same. Since the values of arguments are some-
times called points (as in: the value of f at point x), this is called point-
wise equality. Function equality without specifying the arguments is
described as point-free. (Incidentally, point-free equations often involve
composition of functions, which is symbolized by a point, so this might
be a little confusing to the beginner.)

The closest one can get to declaring a monoid in C++ would be to
use the (proposed) syntax for concepts.
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template<class T>
T mempty = delete;

template<class T>
T mappend(T, T) = delete;

template<class M>
concept bool Monoid = requires (M m) {
{ mempty<M> } -> M;
{ mappend(m, m); } -> M;
I

The first definition uses a value template (also proposed). A polymorphic
value is a family of values — a different value for every type.

The keyword delete means that there is no default value defined:
It will have to be specified on a case-by-case basis. Similarly, there is no
default for mappend.

The concept Monoid is a predicate (hence the bool type) that tests
whether there exist appropriate definitions of mempty and mappend for
a given type M.

An instantiation of the Monoid concept can be accomplished by pro-
viding appropriate specializations and overloads:

template<>
std::string mempty<std::string> = {""};

std::string mappend(std::string s1, std::string s2) {
return s1 + s2;
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Monoid as Category

That was the “familiar” definition of the monoid in terms of elements
of a set. But as you know, in category theory we try to get away from
sets and their elements, and instead talk about objects and morphisms.
So let’s change our perspective a bit and think of the application of the
binary operator as “moving” or “shifting” things around the set.

For instance, there is the operation of adding 5 to every natural num-
ber. It maps 0 to 5, 1 to 6, 2 to 7, and so on. That’s a function defined on
the set of natural numbers. That’s good: we have a function and a set. In
general, for any number n there is a function of adding n — the “adder”
of n.

How do adders compose? The composition of the function that adds
5 with the function that adds 7 is a function that adds 12. So the compo-
sition of adders can be made equivalent to the rules of addition. That’s
good too: we can replace addition with function composition.

But wait, there’s more: There is also the adder for the neutral ele-
ment, zero. Adding zero doesn’t move things around, so it’s the identity
function in the set of natural numbers.

Instead of giving you the traditional rules of addition, I could as well
give you the rules of composing adders, without any loss of informa-
tion. Notice that the composition of adders is associative, because the
composition of functions is associative; and we have the zero adder cor-
responding to the identity function.

An astute reader might have noticed that the mapping from integers
to adders follows from the second interpretation of the type signature
of mappend asm -> (m -> m). It tells us that mappend maps an element
of a monoid set to a function acting on that set.
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Now I want you to forget that you are dealing with the set of natural
numbers and just think of it as a single object, a blob with a bunch
of morphisms — the adders. A monoid is a single object category. In
fact the name monoid comes from Greek mono, which means single.
Every monoid can be described as a single object category with a set of
morphisms that follow appropriate rules of composition.

String concatenation is an interesting case, because we have a choice of
defining right appenders and left appenders (or prependers, if you will).
The composition tables of the two models are a mirror reverse of each
other. You can easily convince yourself that appending “bar” after “foo”
corresponds to prepending “foo” after prepending “bar”.

You might ask the question whether every categorical monoid —
a one-object category — defines a unique set-with-binary-operator
monoid. It turns out that we can always extract a set from a single-object
category. This set is the set of morphisms — the adders in our example.
In other words, we have the hom-set M(m, m) of the single object m in
the category M. We can easily define a binary operator in this set: The
monoidal product of two set-elements is the element corresponding to
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the composition of the corresponding morphisms. If you give me two
elements of M(m, m) corresponding to f and g, their product will corre-
spond to the composition f - g. The composition always exists, because
the source and the target for these morphisms are the same object. And
it’s associative by the rules of category. The identity morphism is the
neutral element of this product. So we can always recover a set monoid
from a category monoid. For all intents and purposes they are one and
the same.

Monoid hom-set seen as morphisms and as points in a set.

There is just one little nit for mathematicians to pick: morphisms don’t
have to form a set. In the world of categories there are things larger than
sets. A category in which morphisms between any two objects form a
set is called locally small. As promised, I will be mostly ignoring such
subtleties, but I thought I should mention them for the record.

A lot of interesting phenomena in category theory have their root
in the fact that elements of a hom-set can be seen both as morphisms,
which follow the rules of composition, and as points in a set. Here, com-
position of morphisms in M translates into monoidal product in the set
M(m,m).
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Challenges

1. Generate a free category from:

(a) A graph with one node and no edges

(b) A graph with one node and one (directed) edge (hint: this
edge can be composed with itself)

(c) A graph with two nodes and a single arrow between them

(d) A graph with a single node and 26 arrows marked with the
letters of the alphabet: a, b, c ... z.

2. What kind of order is this?

(a) A set of sets with the inclusion relation: A is included in B
if every element of A is also an element of B.

(b) C++ types with the following subtyping relation: T1 is a sub-
type of T2 if a pointer to T1 can be passed to a function that
expects a pointer to T2 without triggering a compilation er-
ror.

3. Considering that Bool is a set of two values True and False, show
that it forms two (set-theoretical) monoids with respect to, re-
spectively, operator && (AND) and | | (OR).

4. Represent the Bool monoid with the AND operator as a category:
List the morphisms and their rules of composition.

5. Represent addition modulo 3 as a monoid category.

37



Kleisli Categories

OU’VE SEEN HOW TO MODEL types and pure functions as a category.

I also mentioned that there is a way to model side effects, or non-
pure functions, in category theory. Let’s have a look at one such exam-
ple: functions that log or trace their execution. Something that, in an
imperative language, would likely be implemented by mutating some
global state, as in:

string logger;

bool negate(bool b) {

logger += "Not so! ";
return !b;

You know that this is not a pure function, because its memoized version
would fail to produce a log. This function has side effects.
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In modern programming, we try to stay away from global muta-
ble state as much as possible — if only because of the complications of
concurrency. And you would never put code like this in a library.

Fortunately for us, it’s possible to make this function pure. You just
have to pass the log explicitly, in and out. Let’s do that by adding a
string argument, and pairing regular output with a string that contains
the updated log:

pair<bool, string> negate(bool b, string logger) {
return make_pair(!b, logger + "Not so! ");

This function is pure, it has no side effects, it returns the same pair every
time it’s called with the same arguments, and it can be memoized if
necessary. However, considering the cumulative nature of the log, you’d
have to memoize all possible histories that can lead to a given call. There
would be a separate memo entry for:

negate(true, "It was the best of times. ");

and

negate(true, "It was the worst of times. ");

and so on.

It’s also not a very good interface for a library function. The callers
are free to ignore the string in the return type, so that’s not a huge
burden; but they are forced to pass a string as input, which might be
inconvenient.

Is there a way to do the same thing less intrusively? Is there a way
to separate concerns? In this simple example, the main purpose of the
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function negate is to turn one Boolean into another. The logging is sec-
ondary. Granted, the message that is logged is specific to the function,
but the task of aggregating the messages into one continuous log is a
separate concern. We still want the function to produce a string, but
we’d like to unburden it from producing a log. So here’s the compro-
mise solution:

pair<bool, string> negate(bool b) {
return make_pair(!b, "Not so! ");

The idea is that the log will be aggregated between function calls.

To see how this can be done, let’s switch to a slightly more realistic
example. We have one function from string to string that turns lower
case characters to upper case:

string toUpper(string s) {
string result;
int (*toupperp)(int) = &toupper;
transform(begin(s), end(s), back_inserter(result), toupperp);
return result;

and another that splits a string into a vector of strings, breaking it on

whitespace boundaries:

vector<string> toWords(string s) {
return words(s);

The actual work is done in the auxiliary function words:
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vector<string> words(string s) {
vector<string> result{""};
for (auto i = begin(s); i != end(s); ++i)
{
if (isspace(*i))
result.push_back("");
else
result.back() += *i;
}

return result;

3

We want to modify the functions toUpper and toWords so that they
piggyback a message string on top of their regular return values.

We will “embellish” the return values of these functions. Let’s do it in
a generic way by defining a template Writer that encapsulates a pair
whose first component is a value of arbitrary type A and the second
component is a string:

template<class A>
using Writer = pair<A, string>;

Here are the embellished functions:

41



Writer<string> toUpper(string s) {
string result;
int (*toupperp)(int) = &toupper;
transform(begin(s), end(s), back_inserter(result), toupperp);
return make_pair(result, "toUpper ");

Writer<vector<string>> toWords(string s) {
return make_pair(words(s), "toWords ");

We want to compose these two functions into another embellished func-
tion that uppercases a string and splits it into words, all the while pro-
ducing a log of those actions. Here’s how we may do it:

Writer<vector<string>> process(string s) {
auto p1 = toUpper(s);
auto p2 = toWords(pl.first);
return make_pair(p2.first, pl.second + p2.second);

We have accomplished our goal: The aggregation of the log is no longer
the concern of the individual functions. They produce their own mes-
sages, which are then, externally, concatenated into a larger log.

Now imagine a whole program written in this style. It’s a nightmare
of repetitive, error-prone code. But we are programmers. We know how
to deal with repetitive code: we abstract it! This is, however, not your
run of the mill abstraction — we have to abstract function composition
itself. But composition is the essence of category theory, so before we
write more code, let’s analyze the problem from the categorical point of
view.

42



The Writer Category

The idea of embellishing the return types of a bunch of functions in
order to piggyback some additional functionality turns out to be very
fruitful. We’ll see many more examples of it. The starting point is our
regular category of types and functions. We’ll leave the types as objects,
but redefine our morphisms to be the embellished functions.

For instance, suppose that we want to embellish the function isEven
that goes from int to bool. We turn it into a morphism that is repre-
sented by an embellished function. The important point is that this mor-
phism is still considered an arrow between the objects int and bool,
even though the embellished function returns a pair:

pair<bool, string> isEven(int n) {
return make_pair(n % 2 == 0, "isEven ");

}

By the laws of a category, we should be able to compose this morphism
with another morphism that goes from the object bool to whatever. In
particular, we should be able to compose it with our earlier negate:

pair<bool, string> negate(bool b) {
return make_pair(!b, "Not so! ");

3

Obviously, we cannot compose these two morphisms the same way we
compose regular functions, because of the input/output mismatch. Their
composition should look more like this:

pair<bool, string> isOdd(int n) {
pair<bool, string> p1 = isEven(n);
pair<bool, string> p2 = negate(pl.first);
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return make_pair(p2.first, pl.second + p2.second);
3
So here’s the recipe for the composition of two morphisms in this new
category we are constructing;:

1. Execute the embellished function corresponding to the first mor-
phism

2. Extract the first component of the result pair and pass it to the
embellished function corresponding to the second morphism

3. Concatenate the second component (the string) of the first result
and the second component (the string) of the second result

4. Return a new pair combining the first component of the final re-
sult with the concatenated string.

If we want to abstract this composition as a higher order function
in C++, we have to use a template parameterized by three types cor-
responding to three objects in our category. It should take two embel-
lished functions that are composable according to our rules, and return
a third embellished function:

template<class A, class B, class C>

function<Writer<C>(A)> compose(function<Writer<B>(A)> m1,
function<Writer<C>(B)> m2)

{
return [m1, m2J(A x) {
auto p1 = ml1(x);
auto p2 = m2(pl.first);
return make_pair(p2.first, pl.second + p2.second);
3
3

Now we can go back to our earlier example and implement the compo-
sition of toUpper and toWords using this new template:
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Writer<vector<string>> process(string s) {
return compose<string, string, vector<string>>(toUpper, toWords)(s);

}

There is still a lot of noise with the passing of types to the compose
template. This can be avoided as long as you have a C++14-compliant
compiler that supports generalized lambda functions with return type
deduction (credit for this code goes to Eric Niebler):

auto const compose = [](auto ml1, auto m2) {
return [m1, m2](auto x) {
auto p1 m1(x);
auto p2 = m2(pl.first);

return make_pair(p2.first, pl.second + p2.second);
3
3

In this new definition, the implementation of process simplifies to:

Writer<vector<string>> process(string s) {
return compose(toUpper, toWords)(s);

3

But we are not finished yet. We have defined composition in our new
category, but what are the identity morphisms? These are not our reg-
ular identity functions! They have to be morphisms from type A back
to type A, which means they are embellished functions of the form:

Writer<A> identity(A);

They have to behave like units with respect to composition. If you look
at our definition of composition, you’ll see that an identity morphism
should pass its argument without change, and only contribute an empty
string to the log:
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template<class A> Writer<A> identity(A x) {
return make_pair(x, "");

You can easily convince yourself that the category we have just defined
isindeed a legitimate category. In particular, our composition is trivially
associative. If you follow what’s happening with the first component of
each pair, it’s just a regular function composition, which is associative.
The second components are being concatenated, and concatenation is
also associative.

An astute reader may notice that it would be easy to generalize this
construction to any monoid, not just the string monoid. We would use
mappend inside compose and mempty inside identity (in place of + and
""). There really is no reason to limit ourselves to logging just strings.
A good library writer should be able to identify the bare minimum of
constraints that make the library work — here the logging library’s only
requirement is that the log have monoidal properties.

Writer in Haskell

The same thing in Haskell is a little more terse, and we also get a lot
more help from the compiler. Let’s start by defining the Writer type:

type Writer a = (a, String)
Here I'm just defining a type alias, an equivalent of a typedef (or using)
in C++. The type Writer is parameterized by a type variable a and is

equivalent to a pair of a and String. The syntax for pairs is minimal:
just two items in parentheses, separated by a comma.
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Our morphisms are functions from an arbitrary type to some Writer
type:

a -> Writer b

We'll declare the composition as a funny infix operator, sometimes
called the “fish™:

(>=>) :: (a => Writer b) -> (b -> Writer c¢) -> (a -> Writer c¢)

It’s a function of two arguments, each being a function on its own, and
returning a function. The first argument is of the type (a -> Writer
b), the second is (b -> Writer c), and the resultis (a -> Writer c).

Here’s the definition of this infix operator — the two arguments m1
and m2 appearing on either side of the fishy symbol:

ml >=> m2 = \x ->
let (y, s1) = ml x
(z, s2) =m2 y
in (z, s1 ++ s2)

The result is a lambda function of one argument x. The lambda is written
as a backslash — think of it as the Greek letter A with an amputated leg.

The let expression lets you declare auxiliary variables. Here the re-
sult of the call to m1 is pattern matched to a pair of variables (y, s1);
and the result of the call to m2, with the argument y from the first pat-
tern, is matched to (z, s2).

It is common in Haskell to pattern match pairs, rather than use ac-
cessors, as we did in C++. Other than that there is a pretty straightfor-
ward correspondence between the two implementations.
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The overall value of the let expression is specified in its in clause:
here it’s a pair whose first component is z and the second component
is the concatenation of two strings, s1++s2.

I will also define the identity morphism for our category, but for
reasons that will become clear much later, I will call it return.

return :: a -> Writer a
return x = (x, "")

For completeness, let’s have the Haskell versions of the embellished
functions upCase and toWords:

upCase :: String -> Writer String
upCase s = (map toUpper s, "upCase ")

toWords :: String -> Writer [String]
toWords s = (words s, "toWords ")

The function map corresponds to the C++ transform. It applies the char-
acter function toUpper to the string s. The auxiliary function words is
defined in the standard Prelude library.

Finally, the composition of the two functions is accomplished with
the help of the fish operator:

process :: String -> Writer [String]
process = upCase >=> toWords

Kleisli Categories

You might have guessed that I haven’t invented this category on the
spot. It’s an example of the so called Kleisli category — a category based
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on a monad. We are not ready to discuss monads yet, but I wanted to
give you a taste of what they can do. For our limited purposes, a Kleisli
category has, as objects, the types of the underlying programming lan-
guage. Morphisms from type A to type B are functions that go from A to
a type derived from B using the particular embellishment. Each Kleisli
category defines its own way of composing such morphisms, as well as
the identity morphisms with respect to that composition. (Later we’ll
see that the imprecise term “embellishment” corresponds to the notion
of an endofunctor in a category.)

The particular monad that I used as the basis of the category in this
postis called the writer monad and it’s used for logging or tracing the ex-
ecution of functions. It’s also an example of a more general mechanism
for embedding effects in pure computations. You’ve seen previously that
we could model programming-language types and functions in the cat-
egory of sets (disregarding bottoms, as usual). Here we have extended
this model to a slightly different category, a category where morphisms
are represented by embellished functions, and their composition does
more than just pass the output of one function to the input of another.
We have one more degree of freedom to play with: the composition it-
self. It turns out that this is exactly the degree of freedom which makes
it possible to give simple denotational semantics to programs that in
imperative languages are traditionally implemented using side effects.

Challenge

A function that is not defined for all possible values of its argument is
called a partial function. It’s not really a function in the mathematical
sense, so it doesn’t fit the standard categorical mold. It can, however, be
represented by a function that returns an embellished type optional:
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template<class A> class optional {
bool _isValid;
A _value;

public:
optional() ¢ _isValid(false) {3}
optional(A v) : _isValid(true), _value(v) {3}
bool isValid() const { return _isValid; }
A value() const { return _value; }

3

For example, here’s the implementation of the embellished function
safe_root:

optional<double> safe_root(double x) {
if (x >= 0) return optional<double>{sqrt(x)};
else return optional<double>{};

Here’s the challenge:

1. Construct the Kleisli category for partial functions (define com-
position and identity).

2. Implement the embellished function safe_reciprocal that re-
turns a valid reciprocal of its argument, if it’s different from zero.

3. Compose the functions safe_root and safe_reciprocal to
implement safe_root_reciprocal that calculates sqrt(1/x)
whenever possible.
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Products and Coproducts

HE ANCIENT GREEK playwright Euripides once said: “Every man is

like the company he is wont to keep.” We are defined by our re-
lationships. Nowhere is this more true than in category theory. If we
want to single out a particular object in a category, we can only do this
by describing its pattern of relationships with other objects (and itself).
These relationships are defined by morphisms.

There is a common construction in category theory called the uni-
versal construction for defining objects in terms of their relationships.
One way of doing this is to pick a pattern, a particular shape constructed
from objects and morphisms, and look for all its occurrences in the cate-
gory. If it’s a common enough pattern, and the category is large, chances
are you’ll have lots and lots of hits. The trick is to establish some kind of
ranking among those hits, and pick what could be considered the best

fit.

51



This process is reminiscent of the way we do web searches. A query
is like a pattern. A very general query will give you large recall: lots of
hits. Some may be relevant, others not. To eliminate irrelevant hits, you
refine your query. That increases its precision. Finally, the search engine
will rank the hits and, hopefully, the one result that you’re interested in
will be at the top of the list.

Initial Object

The simplest shape is a single object. Obviously, there are as many in-
stances of this shape as there are objects in a given category. That’s
a lot to choose from. We need to establish some kind of ranking and
try to find the object that tops this hierarchy. The only means at our
disposal are morphisms. If you think of morphisms as arrows, then it’s
possible that there is an overall net flow of arrows from one end of the
category to another. This is true in ordered categories, for instance in
partial orders. We could generalize that notion of object precedence by
saying that object a is “more initial” than object b, if there is an arrow
(a morphism) going from a to b. We would then define the initial object
as one that has arrows going to all other objects. Obviously there is no
guarantee that such an object exists, and that’s okay. A bigger problem
is that there may be too many such objects: The recall is good, but pre-
cision is lacking. The solution is to take a hint from ordered categories
— they allow at most one arrow between any two objects: there is only
one way of being less-than or equal-to another object. Which leads us
to this definition of the initial object:

The initial object is the object that has one and only one
morphism going to any object in the category.
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However, even that doesn’t guarantee the uniqueness of the initial ob-
ject (if one exists). But it guarantees the next best thing: uniqueness up
to isomorphism. Isomorphisms are very important in category theory, so
I'll talk about them shortly. For now, let’s just agree that uniqueness up
to isomorphism justifies the use of “the” in the definition of the initial
object.

Here are some examples: The initial object in a partially ordered
set (often called a poset) is its least element. Some posets don’t have an
initial object — like the set of all integers, positive and negative, with
less-than-or-equal relation for morphisms.

In the category of sets and functions, the initial object is the empty
set. Remember, an empty set corresponds to the Haskell type Void (there
is no corresponding type in C++) and the unique polymorphic function
from Void to any other type is called absurd:

absurd :: Void -> a

It’s this family of morphisms that makes Void the initial object in the
category of types.
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Terminal Object

Let’s continue with the single-object pattern, but let’s change the way
we rank the objects. We’ll say that object a is “more terminal” than ob-
ject b if there is a morphism going from b to a (notice the reversal of
direction). We’ll be looking for an object that’s more terminal than any
other object in the category. Again, we will insist on uniqueness:

The terminal object is the object with one and only one
morphism coming to it from any object in the category.

And again, the terminal object is unique, up to isomorphism, which I
will show shortly. But first let’s look at some examples. In a poset, the
terminal object, if it exists, is the biggest object. In the category of sets,
the terminal object is a singleton. We’ve already talked about singletons
— they correspond to the void type in C++ and the unit type () in
Haskell. It’s a type that has only one value — implicit in C++ and explicit
in Haskell, denoted by (). We’ve also established that there is one and
only one pure function from any type to the unit type:
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unit :: a -=> ()
unit _ = ()

so all the conditions for the terminal object are satisfied.

Notice that in this example the uniqueness condition is crucial, be-
cause there are other sets (actually, all of them, except for the empty
set) that have incoming morphisms from every set. For instance, there
is a Boolean-valued function (a predicate) defined for every type:

yes :: a —-> Bool
yes _ = True

But Bool is not a terminal object. There is at least one more Bool-valued
function from every type (except Void, for which both functions are
equal to absurd):

no :: a -> Bool
no _ = False

Insisting on uniqueness gives us just the right precision to narrow down
the definition of the terminal object to just one type.

Duality

You can’t help but to notice the symmetry between the way we defined
the initial object and the terminal object. The only difference between
the two was the direction of morphisms. It turns out that for any cate-
gory C we can define the opposite category C°? just by reversing all the
arrows. The opposite category automatically satisfies all the require-
ments of a category, as long as we simultaneously redefine composi-
tion. If original morphisms f :: a — band g :: b — ¢ composed to

55



h :: a - cwith h = g o f, then the reversed morphisms f°? :: b — a
and g°? :: ¢ - b will compose to h°? :: ¢ —> a with h°P = f°P o g°P And
reversing the identity arrows is a (pun alert!) no-op.

Duality is a very important property of categories because it doubles
the productivity of every mathematician working in category theory.
For every construction you come up with, there is its opposite; and for
every theorem you prove, you get one for free. The constructions in the
opposite category are often prefixed with “co”, so you have products
and coproducts, monads and comonads, cones and cocones, limits and
colimits, and so on. There are no cocomonads though, because reversing
the arrows twice gets us back to the original state.

It follows then that a terminal object is the initial object in the op-
posite category.

Isomorphisms

As programmers, we are well aware that defining equality is a nontriv-
ial task. What does it mean for two objects to be equal? Do they have to
occupy the same location in memory (pointer equality)? Or is it enough
that the values of all their components are equal? Are two complex
numbers equal if one is expressed as the real and imaginary part, and
the other as modulus and angle? You’d think that mathematicians would
have figured out the meaning of equality, but they haven’t. They have
the same problem of multiple competing definitions for equality. There
is the propositional equality, intensional equality, extensional equality,
and equality as a path in homotopy type theory. And then there are the
weaker notions of isomorphism, and even weaker of equivalence.

The intuition is that isomorphic objects look the same — they have
the same shape. It means that every part of one object corresponds to
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some part of another object in a one-to-one mapping. As far as our in-
struments can tell, the two objects are a perfect copy of each other.
Mathematically it means that there is a mapping from object a to ob-
ject b, and there is a mapping from object b back to object a, and they
are the inverse of each other. In category theory we replace mappings
with morphisms. An isomorphism is an invertible morphism; or a pair
of morphisms, one being the inverse of the other.

We understand the inverse in terms of composition and identity:
Morphism g is the inverse of morphism f if their composition is the
identity morphism. These are actually two equations because there are
two ways of composing two morphisms:

f.g=1id
g . f=1id

When I said that the initial (terminal) object was unique up to isomor-
phism, I meant that any two initial (terminal) objects are isomorphic.
That’s actually easy to see. Let’s suppose that we have two initial ob-
jects i; and iy. Since iy is initial, there is a unique morphism f from i; to
ip. By the same token, since i, is initial, there is a unique morphism g
from i, to i;. What’s the composition of these two morphisms?

d ¥
1
1 9 Yy
All morphisms in this diagram are unique.
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The composition g o f must be a morphism from i; to i;. But i; is initial
so there can only be one morphism going from i; to i;. Since we are in
a category, we know that there is an identity morphism from i; to iy,
and since there is room for only one, that must be it. Therefore g - f is
equal to identity. Similarly, f - g must be equal to identity, because there
can be only one morphism from i, back to i,. This proves that f and g
must be the inverse of each other. Therefore any two initial objects are
isomorphic.

Notice that in this proof we used the uniqueness of the morphism
from the initial object to itself. Without that we couldn’t prove the “up
to isomorphism” part. But why do we need the uniqueness of f and
g? Because not only is the initial object unique up to isomorphism, it
is unique up to unique isomorphism. In principle, there could be more
than one isomorphism between two objects, but that’s not the case here.
This “uniqueness up to unique isomorphism” is the important property
of all universal constructions.

Products

The next universal construction is that of a product. We know what a
Cartesian product of two sets is: it’s a set of pairs. But what’s the pattern
that connects the product set with its constituent sets? If we can figure
that out, we’ll be able to generalize it to other categories.

All we can say is that there are two functions, the projections, from
the product to each of the constituents. In Haskell, these two functions
are called fst and snd and they pick, respectively, the first and the sec-
ond component of a pair:
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fst :: (a, b) -> a
fst (x, y) = x

snd :: (a, b) -=> b
snd (x, y) =y

Here, the functions are defined by pattern matching their arguments:
the pattern that matches any pair is (x, y), and it extracts its compo-
nents into variables x and y.

These definitions can be simplified even further with the use of wild-
cards:

fst (x, )
snd (_, y)

1
< X

In C++, we would use template functions, for instance:

template<class A, class B> A
fst(pair<A, B> const & p) {
return p.first;

Equipped with this seemingly very limited knowledge, let’s try to define
a pattern of objects and morphisms in the category of sets that will lead
us to the construction of a product of two sets, a and b. This pattern
consists of an object ¢ and two morphisms p and g connecting it to a
and b, respectively:

p::c->a
q::c->b
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All cs that fit this pattern will be considered candidates for the product.
There may be lots of them.

S fﬁﬂ
o.éé‘://g;fg‘o b

For instance, let’s pick, as our constituents, two Haskell types, Int and
Bool, and get a sampling of candidates for their product.

Here’s one: Int. Can Int be considered a candidate for the product
of Int and Bool? Yes, it can — and here are its projections:

p :: Int => Int
p X =X

q :: Int -> Bool
q _ = True

That’s pretty lame, but it matches the criteria.

Here’s another one: (Int, Int, Bool). It’s a tuple of three ele-
ments, or a triple. Here are two morphisms that make it a legitimate
candidate (we are using pattern matching on triples):
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p :: (Int, Int, Bool) -> Int
p(x, _, J) =X

q :: (Int, Int, Bool) -> Bool
q (-, -, b) =b

You may have noticed that while our first candidate was too small — it
only covered the Int dimension of the product; the second was too big
— it spuriously duplicated the Int dimension.

But we haven’t explored yet the other part of the universal con-
struction: the ranking. We want to be able to compare two instances
of our pattern. We want to compare one candidate object ¢ and its two
projections p and q with another candidate object ¢’ and its two projec-
tions p’ and g’. We would like to say that c is “better” than ¢’ if there
is a morphism m from ¢’ to ¢ — but that’s too weak. We also want its
projections to be “better,” or “more universal,” than the projections of
¢’. What it means is that the projections p’ and ¢’ can be reconstructed
from p and q using m:

p'=p . m

Q' =q
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Another way of looking at these equations is that m factorizes p” and q’.
Just pretend that these equations are in natural numbers, and the dot is
multiplication: m is a common factor shared by p’ and ¢’.

Just to build some intuitions, let me show you that the pair (Int,
Bool) with the two canonical projections, fst and snd is indeed better
than the two candidates I presented before.

oIn‘t’
P/ " N
(1nt,Bool )

The mapping m for the first candidate is:

m :: Int -> (Int, Bool)
m x = (x, True)

Indeed, the two projections, p and q can be reconstructed as:

fst (m x)
snd (m x)

X

True

xX X
]

The m for the second example is similarly uniquely determined:
m (x, —, b) = (x, b)
We were able to show that (Int, Bool) is better than either of the two

candidates. Let’s see why the opposite is not true. Could we find some
m' that would help us reconstruct fst and snd from p and q?
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fst p.m
snd

1]
o

In our first example, q always returned True and we know that there
are pairs whose second component is False. We can’t reconstruct snd
from q.

The second example is different: we retain enough information af-
ter running either p or g, but there is more than one way to factorize
fst and snd. Because both p and g ignore the second component of the
triple, our m' can put anything in it. We can have:

m' (x, b) = (x, x, b)

or

m' (x, b)

(x, 42, b)

and so on.

Putting it all together, given any type ¢ with two projections p and g,
there is a unique mfrom c to the Cartesian product (a, b) that factorizes
them. In fact, it just combines p and q into a pair.

m:: c—-> (a, b)
mx=(p x, qx)

That makes the Cartesian product (a, b) our best match, which means
that this universal construction works in the category of sets. It picks
the product of any two sets.

Now let’s forget about sets and define a product of two objects in
any category using the same universal construction. Such a product
doesn’t always exist, but when it does, it is unique up to a unique iso-
morphism.
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A product of two objects a and b is the object ¢ equipped
with two projections such that for any other object ¢’
equipped with two projections there is a unique morphism
m from ¢’ to c that factorizes those projections.

A (higher order) function that produces the factorizing function m from
two candidates is sometimes called the factorizer. In our case, it would
be the function:

factorizer :: (c => a) => (¢ => b) => (¢ -> (a, b))
factorizer p q = \x => (p x, q x)

Coproduct

Like every construction in category theory, the product has a dual,
which is called the coproduct. When we reverse the arrows in the prod-
uct pattern, we end up with an object ¢ equipped with two injections, i
and j: morphisms from a and b to c.

i::ra-—>c
ji:tb->c
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The ranking is also inverted: object ¢ is “better” than object ¢’ that is
equipped with the injections i and j if there is a morphism m from ¢
to ¢’ that factorizes the injections:

it=m. i
jt=m. 3

The “best” such object, one with a unique morphism connecting it to
any other pattern, is called a coproduct and, if it exists, is unique up to
unique isomorphism.

A coproduct of two objects a and b is the object c equipped
with two injections such that for any other object ¢’
equipped with two injections there is a unique morphism
m from c to ¢’ that factorizes those injections.

In the category of sets, the coproduct is the disjoint union of two sets.
An element of the disjoint union of a and b is either an element of a or
an element of b. If the two sets overlap, the disjoint union contains two
copies of the common part. You can think of an element of a disjoint
union as being tagged with an identifier that specifies its origin.
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For a programmer, it’s easier to understand a coproduct in terms of
types: it’s a tagged union of two types. C++ supports unions, but they
are not tagged. It means that in your program you have to somehow
keep track which member of the union is valid. To create a tagged union,
you have to define a tag — an enumeration — and combine it with the
union. For instance, a tagged union of an int and a char const * could
be implemented as:

struct Contact {
enum { isPhone, isEmail } tag;
union { int phoneNum; char const * emailAddr; };

3

The two injections can either be implemented as constructors or as func-
tions. For instance, here’s the first injection as a function PhoneNum:

Contact PhoneNum(int n) {
Contact c;
c.tag = isPhone;
c.phoneNum = n;
return c;

It injects an integer into Contact.

A tagged union is also called a variant, and there is a very general
implementation of a variant in the boost library, boost: :variant.

In Haskell, you can combine any data types into a tagged union by
separating data constructors with a vertical bar. The Contact example
translates into the declaration:

data Contact = PhoneNum Int | EmailAddr String
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Here, PhoneNum and EmailAddr serve both as constructors (injections),
and as tags for pattern matching (more about this later). For instance,
this is how you would construct a contact using a phone number:

helpdesk :: Contact
helpdesk = PhoneNum 2222222

Unlike the canonical implementation of the product that is built into
Haskell as the primitive pair, the canonical implementation of the co-
product is a data type called Either, which is defined in the standard
Prelude as:

data Either a b = Left a | Right b

It is parameterized by two types, a and b and has two constructors: Left
that takes a value of type a, and Right that takes a value of type b.

Just as we’'ve defined the factorizer for a product, we can define one
for the coproduct. Given a candidate type c and two candidate injections
i and j, the factorizer for Either produces the factoring function:

factorizer :: (a => ¢) => (b => ¢) -> Either a b -> ¢
factorizer i j (Left a) =1 a
factorizer i j (Right b) = j b

Asymmetry

We’ve seen two sets of dual definitions: The definition of a terminal ob-
ject can be obtained from the definition of the initial object by reversing
the direction of arrows; in a similar way, the definition of the coprod-
uct can be obtained from that of the product. Yet in the category of sets

67



the initial object is very different from the final object, and coproduct
is very different from product. We’ll see later that product behaves like
multiplication, with the terminal object playing the role of one; whereas
coproduct behaves more like the sum, with the initial object playing the
role of zero. In particular, for finite sets, the size of the product is the
product of the sizes of individual sets, and the size of the coproduct is
the sum of the sizes.

This shows that the category of sets is not symmetric with respect
to the inversion of arrows.

Notice that while the empty set has a unique morphism to any set
(the absurd function), it has no morphisms coming back. The singleton
set has a unique morphism coming to it from any set, but it also has
outgoing morphisms to every set (except for the empty one). As we’ve
seen before, these outgoing morphisms from the terminal object play a
very important role of picking elements of other sets (the empty set has
no elements, so there’s nothing to pick).

It’s the relationship of the singleton set to the product that sets it
apart from the coproduct. Consider using the singleton set, represented
by the unit type (), as yet another — vastly inferior — candidate for the
product pattern. Equip it with two projections p and g: functions from
the singleton to each of the constituent sets. Each selects a concrete
element from either set. Because the product is universal, there is also a
(unique) morphism m from our candidate, the singleton, to the product.
This morphism selects an element from the product set — it selects a
concrete pair. It also factorizes the two projections:

fst . m
g=snd . m

he]
1
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When acting on the singleton value (), the only element of the singleton
set, these two equations become:

p O
q O

fst (m ())
snd (m ())

Since m () is the element of the product picked by m, these equations
tell us that the element picked by p from the first set, p (), is the first
component of the pair picked by m. Similarly, g () is equal to the sec-
ond component. This is in total agreement with our understanding that
elements of the product are pairs of elements from the constituent sets.

There is no such simple interpretation of the coproduct. We could
try the singleton set as a candidate for a coproduct, in an attempt to ex-
tract the elements from it, but there we would have two injections going
into it rather than two projections coming out of it. They’d tell us noth-
ing about their sources (in fact, we’ve seen that they ignore the input
parameter). Neither would the unique morphism from the coproduct to
our singleton. The category of sets just looks very different when seen
from the direction of the initial object than it does when seen from the
terminal end.

This is not an intrinsic property of sets, it’s a property of functions,
which we use as morphisms in Set. Functions are, in general, asymmet-
ric. Let me explain.

A function must be defined for every element of its domain set (in
programming, we call it a total function), but it doesn’t have to cover
the whole codomain. We've seen some extreme cases of it: functions
from a singleton set — functions that select just a single element in
the codomain. (Actually, functions from an empty set are the real ex-
tremes.) When the size of the domain is much smaller than the size of
the codomain, we often think of such functions as embedding the do-
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main in the codomain. For instance, we can think of a function from
a singleton set as embedding its single element in the codomain. I call
them embedding functions, but mathematicians prefer to give a name to
the opposite: functions that tightly fill their codomains are called sur-
Jjective or onto.

The other source of asymmetry is that functions are allowed to map
many elements of the domain set into one element of the codomain.
They can collapse them. The extreme case are functions that map whole
sets into a singleton. You’ve seen the polymorphic unit function that
does just that. The collapsing can only be compounded by composi-
tion. A composition of two collapsing functions is even more collaps-
ing than the individual functions. Mathematicians have a name for non-
collapsing functions: they call them injective or one-to-one.

Of course there are some functions that are neither embedding nor
collapsing. They are called bijections and they are truly symmetric, be-
cause they are invertible. In the category of sets, an isomorphism is the
same as a bijection.

Challenges

1. Show that the terminal object is unique up to unique isomor-
phism.

2. What is a product of two objects in a poset? Hint: Use the univer-
sal construction.

3. What is a coproduct of two objects in a poset?

4. Implement the equivalent of Haskell Either as a generic type in
your favorite language (other than Haskell).

5. Show that Either is a “better” coproduct than int equipped with
two injections:
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int i(int n) { return n; }
int j(bool b) { return b ? 0: 1; }

Hint: Define a function

int m(Either const & e);

that factorizes i and j.

. Continuing the previous problem: How would you argue that int
with the two injections i and j cannot be “better” than Either?
. Still continuing: What about these injections?

int i(int n) {
if (n < @) return n;
return n + 2;

int j(bool b) { return b ? 0: 1; }

. Come up with an inferior candidate for a coproduct of int and
bool that cannot be better than Either because it allows multiple
acceptable morphisms from it to Either.

Bibliography

. The Catsters, Products and Coproducts! video.

1https://www.youtube.com/watch?v:upCSDIOijc
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Simple Algebraic Data Types

E’VE SEEN TWO BASIC ways of combining types: using a product
and a coproduct. It turns out that a lot of data structures in ev-
eryday programming can be built using just these two mechanisms.
This fact has important practical consequences. Many properties of data
structures are composable. For instance, if you know how to compare
values of basic types for equality, and you know how to generalize
these comparisons to product and coproduct types, you can automate
the derivation of equality operators for composite types. In Haskell you
can automatically derive equality, comparison, conversion to and from
string, and more, for a large subset of composite types.
Let’s have a closer look at product and sum types as they appear in
programming.
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Product Types

The canonical implementation of a product of two types in a program-
ming language is a pair. In Haskell, a pair is a primitive type construc-
tor; in C++ it’s a relatively complex template defined in the Standard
Library.

Pairs are not strictly commutative: a pair (Int, Bool) cannot be sub-
stituted for a pair (Bool, Int), even though they carry the same in-
formation. They are, however, commutative up to isomorphism — the
isomorphism being given by the swap function (which is its own in-
verse):

swap :: (a, b) => (b, a)
swap (x, y) = (y, x)

You can think of the two pairs as simply using a different format for
storing the same data. It’s just like big endian vs. little endian.

You can combine an arbitrary number of types into a product by
nesting pairs inside pairs, but there is an easier way: nested pairs are
equivalent to tuples. It’s the consequence of the fact that different ways
of nesting pairs are isomorphic. If you want to combine three types in
a product, a, b, and c, in this order, you can do it in two ways:
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(Ca, b), ¢

or

(a, (b, ©))

These types are different — you can’t pass one to a function that expects
the other — but their elements are in one-to-one correspondence. There
is a function that maps one to another:

alpha :: ((a, b), ¢c) -> (a, (b, ©))
alpha ((x, y), 2z) = (x, (y, 2))

and this function is invertible:

alpha_inv :: (a, (b, ¢c)) -> ((a, b), ©)
alpha_inv (x, (y, 2)) = ((x, y), 2)

so it’s an isomorphism. These are just different ways of repackaging the
same data.

You can interpret the creation of a product type as a binary opera-
tion on types. From that perspective, the above isomorphism looks very
much like the associativity law we’ve seen in monoids:

(axb)*c=ax(bxc)

Except that, in the monoid case, the two ways of composing products
were equal, whereas here they are only equal “up to isomorphism.”

If we can live with isomorphisms, and don’t insist on strict equality,
we can go even further and show that the unit type, (), is the unit of the
product the same way 1 is the unit of multiplication. Indeed, the pairing
of a value of some type a with a unit doesn’t add any information. The

type:
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(a, O

is isomorphic to a. Here’s the isomorphism:

rho :: (a, ()) -> a
rho (x, ()) = x

rho_inv :: a => (a, ()
rho_inv x = (x, ())

These observations can be formalized by saying that Set (the category
of sets) is a monoidal category. It’s a category that’s also a monoid, in the
sense that you can multiply objects (here, take their Cartesian product).
I'll talk more about monoidal categories, and give the full definition in
the future.

There is a more general way of defining product types in Haskell —
especially, as we’ll see soon, when they are combined with sum types. It
uses named constructors with multiple arguments. A pair, for instance,
can be defined alternatively as:

data Pair a b =P ab

Here, Pair a b is the name of the type parameterized by two other
types, a and b; and P is the name of the data constructor. You define a pair
type by passing two types to the Pair type constructor. You construct a
pair value by passing two values of appropriate types to the constructor
P. For instance, let’s define a value stmt as a pair of String and Bool:
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stmt :: Pair String Bool
stmt = P "This statement is" False

The first line is the type declaration. It uses the type constructor Pair,
with String and Bool replacing a and the b in the generic definition
of Pair. The second line defines the actual value by passing a concrete
string and a concrete Boolean to the data constructor P. Type construc-
tors are used to construct types; data constructors, to construct values.

Since the name spaces for type and data constructors are separate
in Haskell, you will often see the same name used for both, as in:

data Pair a b = Pair a b

And if you squint hard enough, you may even view the built-in pair
type as a variation on this kind of declaration, where the name Pair is
replaced with the binary operator (, ). In fact you can use (,) just like
any other named constructor and create pairs using prefix notation:

stmt = (,) "This statement is" False

Similarly, you can use (, ,) to create triples, and so on.
Instead of using generic pairs or tuples, you can also define specific
named product types, as in:

data Stmt = Stmt String Bool
which is just a product of String and Bool, but it’s given its own name
and constructor. The advantage of this style of declaration is that you

may define many types that have the same content but different mean-
ing and functionality, and which cannot be substituted for each other.
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Programming with tuples and multi-argument constructors can get
messy and error prone — keeping track of which component represents
what. It’s often preferable to give names to components. A product type
with named fields is called a record in Haskell, and a struct in C.

Records

Let’s have a look at a simple example. We want to describe chemical
elements by combining two strings, name and symbol; and an integer,
the atomic number; into one data structure. We can use a tuple (String,
String, Int) and remember which component represents what. We
would extract components by pattern matching, as in this function that
checks if the symbol of the element is the prefix of its name (as in He
being the prefix of Helium):

startsWithSymbol :: (String, String, Int) -> Bool
startsWithSymbol (name, symbol, _) = isPrefixOf symbol name

This code is error prone, and is hard to read and maintain. It’s much
better to define a record:

data Element = Element { name :: String
, symbol :: String
, atomicNumber :: Int }

The two representations are isomorphic, as witnessed by these two con-
version functions, which are the inverse of each other:

tupleToElem :: (String, String, Int) -> Element
tupleToElem (n, s, a) = Element { name = n
, symbol =s
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, atomicNumber = a }

elemToTuple :: Element -> (String, String, Int)
elemToTuple e = (name e, symbol e, atomicNumber e)

Notice that the names of record fields also serve as functions to access
these fields. For instance, atomicNumber e retrieves the atomicNumber
field from e. We use atomicNumber as a function of the type:

atomicNumber :: Element -> Int

With the record syntax for Element, our function startsWithSymbol
becomes more readable:

startsWithSymbol :: Element -> Bool
startsWithSymbol e = isPrefixOf (symbol e) (name e)

We could even use the Haskell trick of turning the function isPrefix0f
into an infix operator by surrounding it with backquotes, and make it
read almost like a sentence:

startsWithSymbol e = symbol e ‘isPrefixOf‘ name e

The parentheses could be omitted in this case, because an infix operator
has lower precedence than a function call.

Sum Types

Just as the product in the category of sets gives rise to product types,
the coproduct gives rise to sum types. The canonical implementation of
a sum type in Haskell is:
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data Either a b = Left a | Right b

And like pairs, Eithers are commutative (up to isomorphism), can be
nested, and the nesting order is irrelevant (up to isomorphism). So we
can, for instance, define a sum equivalent of a triple:

data OneOfThree a b ¢ = Sinistral a | Medial b | Dextral c

and so on.

It turns out that Set is also a (symmetric) monoidal category with re-
spect to coproduct. The role of the binary operation is played by the dis-
joint sum, and the role of the unit element is played by the initial object.
In terms of types, we have Either as the monoidal operator and Void,
the uninhabited type, as its neutral element. You can think of Either
as plus, and Void as zero. Indeed, adding Void to a sum type doesn’t
change its content. For instance:

Either a Void

is isomorphic to a. That’s because there is no way to construct a Right
version of this type — there isn’t a value of type Void. The only inhabi-
tants of Either a Void are constructed using the Left constructors and
they simply encapsulate a value of type a. So, symbolically, a + 0 = a.

Sum types are pretty common in Haskell, but their C++ equivalents,
unions or variants, are much less common. There are several reasons for
that.

First of all, the simplest sum types are just enumerations and are
implemented using enum in C++. The equivalent of the Haskell sum type:
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data Color = Red | Green | Blue

is the C++:
enum { Red, Green, Blue };
An even simpler sum type:

data Bool = True | False

is the primitive bool in C++.

Simple sum types that encode the presence or absence of a value are
variously implemented in C++ using special tricks and “impossible” val-
ues, like empty strings, negative numbers, null pointers, etc. This kind
of optionality, if deliberate, is expressed in Haskell using the Maybe type:

data Maybe a = Nothing | Just a

The Maybe type is a sum of two types. You can see this if you separate
the two constructors into individual types. The first one would look like
this:

data NothingType = Nothing

It’s an enumeration with one value called Nothing. In other words, it’s
a singleton, which is equivalent to the unit type (). The second part:

data JustType a = Just a

is just an encapsulation of the type a. We could have encoded Maybe as:
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data Maybe a = Either () a

More complex sum types are often faked in C++ using pointers. A
pointer can be either null, or point to a value of specific type. For in-
stance, a Haskell list type, which can be defined as a (recursive) sum

type:

data List a = Nil | Cons a (List a)

can be translated to C++ using the null pointer trick to implement the
empty list:

template<class A>
class List {
Node<A> * _head;
public:
List() : _head(nullptr) {3}
List(A a, List<A> 1)
: _head(new Node<A>(a, 1))
{3
3

Notice that the two Haskell constructors Nil and Cons are trans-
lated into two overloaded List constructors with analogous arguments
(none, for Nil; and a value and a list for Cons). The List class doesn’t
need a tag to distinguish between the two components of the sum type.
Instead it uses the special nullptr value for _head to encode Nil.

The main difference, though, between Haskell and C++ types is that
Haskell data structures are immutable. If you create an object using one
particular constructor, the object will forever remember which con-
structor was used and what arguments were passed to it. So a Maybe
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object that was created as Just "energy" will never turn into Nothing.
Similarly, an empty list will forever be empty, and a list of three ele-
ments will always have the same three elements.

It’s this immutability that makes construction reversible. Given an
object, you can always disassemble it down to parts that were used in
its construction. This deconstruction is done with pattern matching and
it reuses constructors as patterns. Constructor arguments, if any, are
replaced with variables (or other patterns).

The List data type has two constructors, so the deconstruction of an
arbitrary List uses two patterns corresponding to those constructors.
One matches the empty Nil list, and the other a Cons-constructed list.
For instance, here’s the definition of a simple function on Lists:

maybeTail :: List a -> Maybe (List a)
maybeTail Nil = Nothing
maybeTail (Cons _ t) = Just t

The first part of the definition of maybeTail uses the Nil constructor as
pattern and returns Nothing. The second part uses the Cons constructor
as pattern. It replaces the first constructor argument with a wildcard,
because we are not interested in it. The second argument to Cons is
bound to the variable t (I will call these things variables even though,
strictly speaking, they never vary: once bound to an expression, a vari-
able never changes). The return value is Just t. Now, depending on
how your List was created, it will match one of the clauses. If it was
created using Cons, the two arguments that were passed to it will be
retrieved (and the first discarded).

Even more elaborate sum types are implemented in C++ using poly-
morphic class hierarchies. A family of classes with a common ancestor
may be understood as one variant type, in which the vtable serves as a
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hidden tag. What in Haskell would be done by pattern matching on the
constructor, and by calling specialized code, in C++ is accomplished by
dispatching a call to a virtual function based on the vtable pointer.

You will rarely see union used as a sum type in C++ because of
severe limitations on what can go into a union. You can’t even put a
std::string into a union because it has a copy constructor.

Algebra of Types

Taken separately, product and sum types can be used to define a variety
of useful data structures, but the real strength comes from combining
the two. Once again we are invoking the power of composition.

Let’s summarize what we’ve discovered so far. We've seen two com-
mutative monoidal structures underlying the type system: We have the
sum types with Void as the neutral element, and the product types with
the unit type, (), as the neutral element. We’d like to think of them as
analogous to addition and multiplication. In this analogy, Void would
correspond to zero, and unit, (), to one.

Let’s see how far we can stretch this analogy. For instance, does
multiplication by zero give zero? In other words, is a product type with
one component being Void isomorphic to Void? For example, is it pos-
sible to create a pair of, say Int and Void?

To create a pair you need two values. Although you can easily come
up with an integer, there is no value of type Void. Therefore, for any type
a, the type (a, Void) is uninhabited — has no values — and is therefore
equivalent to Void. In other words, a x 0 = 0.

Another thing that links addition and multiplication is the distribu-
tive property:

ax(b+c)=axb+axc

83



Does it also hold for product and sum types? Yes, it does — up to iso-
morphisms, as usual. The left hand side corresponds to the type:

(a, Either b c¢)

and the right hand side corresponds to the type:

Either (a, b) (a, ©)

Here’s the function that converts them one way:

prodToSum :: (a, Either b ¢) -> Either (a, b) (a, ¢)
prodToSum (x, e) =
case e of
Left y -> Left (x, y)
Right z -> Right (x, z)

and here’s one that goes the other way:

sumToProd :: Either (a, b) (a, c) -> (a, Either b c)
sumToProd e =
case e of
Left (x, y) => (x, Left y)
Right (x, z) -> (x, Right z)

The case of statement is used for pattern matching inside functions.
Each pattern is followed by an arrow and the expression to be evaluated

when the pattern matches. For instance, if you call prodToSum with the
value:
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prodl :: (Int, Either String Float)
prodl = (2, Left "Hi!")

theeincase e of willbe equaltoLeft "Hi!".It will match the pattern
Left vy, substituting "Hi!" for y. Since the x has already been matched
to 2, the result of the case of clause, and the whole function, will be
Left (2, "Hi!"), as expected.

I’'m not going to prove that these two functions are the inverse of
each other, but if you think about it, they must be! They are just trivially
re-packing the contents of the two data structures. It’s the same data,
only different format.

Mathematicians have a name for two such intertwined monoids: it’s
called a semiring. It’s not a full ring, because we can’t define subtraction
of types. That’s why a semiring is sometimes called a rig, which is a
pun on “ring without an n” (negative). But barring that, we can get a
lot of mileage from translating statements about, say, natural numbers,
which form a rig, to statements about types. Here’s a translation table
with some entries of interest:

Numbers Types

0 Void

1 O

a+b Either a b = Left a | Right b
axb (a, b) orPair a b = Pair a b
2=1+1 data Bool = True | False
1+a data Maybe = Nothing | Just a
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The list type is quite interesting, because it’s defined as a solution to an
equation. The type we are defining appears on both sides of the equa-
tion:

data List a = Nil | Cons a (List a)

If we do our usual substitutions, and also replace List a with x, we get
the equation:

x =1+ a* x

We can’t solve it using traditional algebraic methods because we can’t
subtract or divide types. But we can try a series of substitutions, where
we keep replacing x on the right hand side with (1 + axx), and use the
distributive property. This leads to the following series:

X =1 + a*x
1 + a*x(1 + a*x) = 1 + a + axa*x
1+ a+ a*a*(1 + a*x) = 1 + a + a*a + axaxa*x

X

X
X =1 + a + axa + a%*a*xa + a*a%ax*a...

We end up with an infinite sum of products (tuples), which can be in-
terpreted as: A list is either empty, 1; or a singleton, a; or a pair, axa; or
a triple, axax*a; etc... Well, that’s exactly what a list is — a string of as!

There’s much more to lists than that, and we’ll come back to them
and other recursive data structures after we learn about functors and
fixed points.

Solving equations with symbolic variables — that’s algebra! It’s
what gives these types their name: algebraic data types.

Finally, I should mention one very important interpretation of the
algebra of types. Notice that a product of two types a and b must contain
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both a value of type a and a value of type b, which means both types
must be inhabited. A sum of two types, on the other hand, contains
either a value of type a or a value of type b, so it’s enough if one of
them is inhabited. Logical and and or also form a semiring, and it too
can be mapped into type theory:

Logic  Types

false Void

true O

allb Either a b = Left a | Right b
a&&b (a, b)

This analogy goes deeper, and is the basis of the Curry-Howard isomor-
phism between logic and type theory. We’ll come back to it when we
talk about function types.

Challenges

1. Show the isomorphism between Maybe aand Either () a.
2. Here’s a sum type defined in Haskell:

data Shape = Circle Float
| Rect Float Float

When we want to define a function like area that acts on a Shape,
we do it by pattern matching on the two constructors:

area :: Shape -> Float

87



area (Circle r) =pi *r *r
area (Rect d h) =d % h

Implement Shape in C++ or Java as an interface and create two
classes: Circle and Rect. Implement area as a virtual function.

. Continuing with the previous example: We can easily add a new
function circ that calculates the circumference of a Shape. We
can do it without touching the definition of Shape:

circ :: Shape -> Float
circ (Circle r) = 2.0 x pi *r
circ (Rect d h) = 2.0 x (d + h)

Add circ to your C++ or Java implementation. What parts of the
original code did you have to touch?

. Continuing further: Add a new shape, Square, to Shape and make
all the necessary updates. What code did you have to touch in
Haskell vs. C++ or Java? (Even if you're not a Haskell program-
mer, the modifications should be pretty obvious.)

. Show that a + a = 2 x a holds for types (up to isomorphism). Re-
member that 2 corresponds to Bool, according to our translation
table.
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Functors

T THE RISK OF SOUNDING like a broken record, I will say this about

functors: A functor is a very simple but powerful idea. Category
theory is just full of those simple but powerful ideas. A functor is a
mapping between categories. Given two categories, C and D, a functor
F maps objects in C to objects in D — it’s a function on objects. If a is
an object in C, we’ll write its image in D as Fa (no parentheses). But a
category is not just objects — it’s objects and morphisms that connect
them. A functor also maps morphisms — it’s a function on morphisms.
But it doesn’t map morphisms willy-nilly — it preserves connections.
So if a morphism f in C connects object a to object b,

f:ra—b
the image of f in D, F f, will connect the image of a to the image of b:
Ff: Fa— Fb
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(This is a mixture of mathematical and Haskell notation that hope-
fully makes sense by now. I won’t use parentheses when applying func-
tors to objects or morphisms.)

As you can see, a functor preserves the structure of a category: what’s
connected in one category will be connected in the other category. But
there’s something more to the structure of a category: there’s also the
composition of morphisms. If h is a composition of f and g:

h=gf

we want its image under F to be a composition of the images of f and
g
Fh=Fg.Ff

Fh
s Fo
Fb
h
a @%

b
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Finally, we want all identity morphisms in C to be mapped to identity
morphisms in D:
Fid, = idp,

Here, id, is the identity at the object a, and idg, the identity at Fa. Note
that these conditions make functors much more restrictive than regular
functions. Functors must preserve the structure of a category. If you
picture a category as a collection of objects held together by a network
of morphisms, a functor is not allowed to introduce any tears into this
fabric. It may smash objects together, it may glue multiple morphisms
into one, but it may never break things apart. This no-tearing constraint
is similar to the continuity condition you might know from calculus.
In this sense functors are “continuous” (although there exists an even
more restrictive notion of continuity for functors). Just like functions,
functors may do both collapsing and embedding. The embedding aspect
is more prominent when the source category is much smaller than the
target category. In the extreme, the source can be the trivial singleton
category — a category with one object and one morphism (the identity).
A functor from the singleton category to any other category simply
selects an object in that category. This is fully analogous to the property
of morphisms from singleton sets selecting elements in target sets. The
maximally collapsing functor is called the constant functor A,. It maps
every object in the source category to one selected object c in the target
category. It also maps every morphism in the source category to the
identity morphism id,. It acts like a black hole, compacting everything
into one singularity. We’ll see more of this functor when we discuss
limits and colimits.
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Functors in Programming

Let’s get down to earth and talk about programming. We have our cat-
egory of types and functions. We can talk about functors that map this
category into itself — such functors are called endofunctors. So what’s
an endofunctor in the category of types? First of all, it maps types to
types. We’ve seen examples of such mappings, maybe without realizing
that they were just that. I'm talking about definitions of types that were
parameterized by other types. Let’s see a few examples.

The Maybe Functor

The definition of Maybe is a mapping from type a to type Maybe a:

data Maybe a = Nothing | Just a

Here’s an important subtlety: Maybe itself is not a type, it’s a type con-
structor. You have to give it a type argument, like Int or Bool, in order
to turn it into a type. Maybe without any argument represents a func-
tion on types. But can we turn Maybe into a functor? (From now on,
when I speak of functors in the context of programming, I will almost
always mean endofunctors.) A functor is not only a mapping of objects
(here, types) but also a mapping of morphisms (here, functions). For any
function from a to b:

f::a->b

we would like to produce a function from Maybe atoMaybe b.To define
such a function, we’ll have two cases to consider, corresponding to the
two constructors of Maybe. The Nothing case is simple: we’ll just return
Nothing back. And if the argument is Just, we’ll apply the function f
to its contents. So the image of f under Maybe is the function:
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f' :: Maybe a -> Maybe b
f' Nothing = Nothing
f' (Just x) = Just (f x)

(By the way, in Haskell you can use apostrophes in variables names,
which is very handy in cases like these.) In Haskell, we implement the
morphism-mapping part of a functor as a higher order function called
fmap. In the case of Maybe, it has the following signature:

fmap :: (a -> b) -> (Maybe a -> Maybe b)

fmap §
Q/'—\Q
e Hipes
cf/"~‘-_~jﬁa4,

a

We often say that fmap [ifts a function. The lifted function acts on Maybe
values. As usual, because of currying, this signature may be interpreted
in two ways: as a function of one argument — which itself is a func-
tion (a -> b) — returning a function (Maybe a -> Maybe b); or as a
function of two arguments returning Maybe b:

fmap :: (a -> b) -> Maybe a -> Maybe b

Based on our previous discussion, this is how we implement fmap for
Maybe:
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fmap _ Nothing = Nothing
fmap f (Just x) = Just (f x)

To show that the type constructor Maybe together with the function
fmap form a functor, we have to prove that fmap preserves identity and
composition. These are called “the functor laws,” but they simply ensure
the preservation of the structure of the category.

Equational Reasoning

To prove the functor laws, I will use equational reasoning, which is a
common proof technique in Haskell. It takes advantage of the fact that
Haskell functions are defined as equalities: the left hand side equals the
right hand side. You can always substitute one for another, possibly re-
naming variables to avoid name conflicts. Think of this as either inlin-
ing a function, or the other way around, refactoring an expression into
a function. Let’s take the identity function as an example:

id x = x

If you see, for instance, id y in some expression, you can replace it with
y (inlining). Further, if you see id applied to an expression, say id (y
+ 2), you can replace it with the expression itself (y + 2). And this
substitution works both ways: you can replace any expression e with
id e (refactoring). If a function is defined by pattern matching, you can
use each sub-definition independently. For instance, given the above
definition of fmap you can replace fmap f Nothing with Nothing, or
the other way around. Let’s see how this works in practice. Let’s start
with the preservation of identity:

94



fmap id = id

There are two cases to consider: Nothing and Just. Here’s the first case
(m using Haskell pseudo-code to transform the left hand side to the
right hand side):

fmap id Nothing

{ definition of fmap }
Nothing

{ definition of id }
id Nothing

Notice that in the last step I used the definition of id backwards. I re-
placed the expression Nothing with id Nothing. In practice, you carry
out such proofs by “burning the candle at both ends,” until you hit the
same expression in the middle — here it was Nothing. The second case
is also easy:

fmap id (Just x)

{ definition of fmap }
Just (id x)

{ definition of id }
Just x

{ definition of id }
id (Just x)

Now, lets show that fmap preserves composition:

fmap (g . f) = fmap g . fmap f

First the Nothing case:
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fmap (g . f) Nothing
{ definition of fmap }
Nothing

{ definition of fmap }
fmap g Nothing

{ definition of fmap }
fmap g (fmap f Nothing)

And then the Just case:

fmap (g . f) (Just x)

{ definition of fmap }

Just ((g . f) x)

{ definition of composition }
Just (g (f x))

{ definition of fmap }

fmap g (Just (f x))

{ definition of fmap }

fmap g (fmap f (Just x))

{ definition of composition }
(fmap g . fmap f) (Just x)

It’s worth stressing that equational reasoning doesn’t work for C++
style “functions” with side effects. Consider this code:

int square(int x) {
return x * Xx;

int counter() {
static int ¢ = 0;
return c++;
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double y = square(counter());

Using equational reasoning, you would be able to inline square to get:

double y = counter() * counter();

This is definitely not a valid transformation, and it will not produce the
same result. Despite that, the C++ compiler will try to use equational
reasoning if you implement square as a macro, with disastrous results.

Optional

Functors are easily expressed in Haskell, but they can be defined in
any language that supports generic programming and higher-order
functions. Let’s consider the C++ analog of Maybe, the template type
optional. Here’s a sketch of the implementation (the actual implemen-
tation is much more complex, dealing with various ways the argument
may be passed, with copy semantics, and with the resource manage-
ment issues characteristic of C++):

template<class T>

class optional {
bool _isValid;
T _v;

public:
optional() ¢ _isValid(false) {3}
optional(T x) : _isValid(true) , _v(x) {3}
bool isValid() const { return _isValid; }
T val() const { return _v; } };

This template provides one part of the definition of a functor: the map-
ping of types. It maps any type T to a new type optional<T>. Let’s define
its action on functions:
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template<class A, class B>
std::function<optional<B>(optional<A>)>
fmap(std::function<B(A)> f) {
return [f](optional<A> opt) {
if (lopt.isValid())
return optional<B>{};
else
return optional<B>{ f(opt.val()) };
};

This is a higher order function, taking a function as an argument and
returning a function. Here’s the uncurried version of it:

template<class A, class B>
optional<B> fmap(std::function<B(A)> f, optional<A> opt) {
if (lopt.isValid())
return optional<B>{};
else
return optional<B>{ f(opt.val()) };

There is also an option of making fmap a template method of optional.
This embarrassment of choices makes abstracting the functor pattern
in C++ a problem. Should functor be an interface to inherit from (un-
fortunately, you can’t have template virtual functions)? Should it be a
curried or an uncurried free template function? Can the C++ compiler
correctly infer the missing types, or should they be specified explicitly?
Consider a situation where the input function f takes an int to a bool.
How will the compiler figure out the type of g:
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auto g = fmap(f);

especially if, in the future, there are multiple functors overloading fmap?
(We’ll see more functors soon.)

Typeclasses

So how does Haskell deal with abstracting the functor? It uses the type-
class mechanism. A typeclass defines a family of types that support a
common interface. For instance, the class of objects that support equal-
ity is defined as follows:

class Eq a where
(==) :: a => a -> Bool

This definition states that type a is of the class Eq if it supports the oper-
ator (==) that takes two arguments of type a and returns a Bool. If you
want to tell Haskell that a particular type is Eq, you have to declare it an
instance of this class and provide the implementation of (==). For exam-
ple, given the definition of a 2D Point (a product type of two Floats):

data Point = Pt Float Float

you can define the equality of points:

instance Eq Point where
(Pt x y) == (Pt x' y') =x ==x' & y == y'

Here I used the operator (==) (the one I'm defining) in the infix po-
sition between the two patterns (Pt x y) and (Pt x' y'). The body

of the function follows the single equal sign. Once Point is declared
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an instance of Eq, you can directly compare points for equality. No-
tice that, unlike in C++ or Java, you don’t have to specify the Eq class
(or interface) when defining Point — you can do it later in client code.
Typeclasses are also Haskell’s only mechanism for overloading func-
tions (and operators). We will need that for overloading fmap for differ-
ent functors. There is one complication, though: a functor is not defined
as a type but as a mapping of types, a type constructor. We need a type-
class that’s not a family of types, as was the case with Eq, but a family of
type constructors. Fortunately a Haskell typeclass works with type con-
structors as well as with types. So here’s the definition of the Functor
class:

class Functor f where
fmap :: (@ =>b) > f a->fb

It stipulates that f is a Functor if there exists a function fmap with the
specified type signature. The lowercase f is a type variable, similar to
type variables a and b. The compiler, however, is able to deduce that it
represents a type constructor rather than a type by looking at its usage:
acting on other types, as in f a and f b. Accordingly, when declaring
an instance of Functor, you have to give it a type constructor, as is the
case with Maybe:

instance Functor Maybe where
fmap _ Nothing = Nothing
fmap f (Just x) = Just (f x)

By the way, the Functor class, as well as its instance definitions for a lot
of simple data types, including Maybe, are part of the standard Prelude
library.
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Functor in C++

Can we try the same approach in C++? A type constructor corresponds
to a template class, like optional, so by analogy, we would parameterize
fmap with a template template parameter F. This is the syntax for it:

template<template<class> F, class A, class B>
F<B> fmap(std::function<B(A)>, F<A>);

We would like to be able to specialize this template for different func-
tors. Unfortunately, there is a prohibition against partial specialization
of template functions in C++. You can’t write:

template<class A, class B>
optional<B> fmap<optional>(std::function<B(A)> f, optional<A> opt)

Instead, we have to fall back on function overloading, which brings us
back to the original definition of the uncurried fmap:

template<class A, class B>
optional<B> fmap(std::function<B(A)> f, optional<A> opt) {
if (lopt.isvValid())
return optional<B>{};
else
return optional<B>{ f(opt.val()) };

This definition works, but only because the second argument of fmap
selects the overload. It totally ignores the more generic definition of
fmap.

101



The List Functor

To get some intuition as to the role of functors in programming, we need
to look at more examples. Any type that is parameterized by another
type is a candidate for a functor. Generic containers are parameterized
by the type of the elements they store, so let’s look at a very simple
container, the list:

data List a = Nil | Cons a (List a)

We have the type constructor List, which is a mapping from any type
a to the type List a. To show that List is a functor we have to define
the lifting of functions: Given a function a -> b define a function List
a -> List b:

fmap :: (a => b) -> (List a -> List b)

A function acting on List a must consider two cases corresponding
to the two list constructors. The Nil case is trivial — just return Nil —
there isn’t much you can do with an empty list. The Cons case is a bit
tricky, because it involves recursion. So let’s step back for a moment
and consider what we are trying to do. We have a list of a, a function
that turns a to b, and we want to generate a list of b. The obvious thing
is to use f to turn each element of the list from a to b. How do we do
this in practice, given that a (non-empty) list is defined as the Cons of a
head and a tail? We apply f to the head and apply the lifted (fmapped) f
to the tail. This is a recursive definition, because we are defining lifted
f in terms of lifted f:

fmap f (Cons x t) = Cons (f x) (fmap f t)
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Notice that, on the right hand side, fmap f is applied to a list that’s
shorter than the list for which we are defining it — it’s applied to its
tail. We recurse towards shorter and shorter lists, so we are bound to
eventually reach the empty list, or Nil. But as we’ve decided earlier,
fmap f acting on Nil returns Nil, thus terminating the recursion. To
get the final result, we combine the new head (f x) with the new tail
(fmap f t) using the Cons constructor. Putting it all together, here’s
the instance declaration for the list functor:

instance Functor List where
fmap _ Nil = Nil
fmap f (Cons x t) = Cons (f x) (fmap f t)

If you are more comfortable with C++, consider the case of a
std: :vector, which could be considered the most generic C++ con-
tainer. The implementation of fmap for std: :vector is just a thin en-
capsulation of std: : transform:

template<class A, class B>

std::vector<B> fmap(std::function<B(A)> f, std::vector<A> v) {
std::vector<B> w;
std::transform( std::begin(v)

, std::end(v)
, std::back_inserter(w)
» )5

return w;

We can use it, for instance, to square the elements of a sequence of
numbers:
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std::vector<int> v{ 1, 2, 3, 4 };
auto w = fmap([J(int i) { return ixi; 3}, v);
std::copy( std::begin(w)

, std::end(w)

, std::ostream_iterator(std::cout, ", "));

Most C++ containers are functors by virtue of implementing iterators
that can be passed to std::transform, which is the more primitive
cousin of fmap. Unfortunately, the simplicity of a functor is lost under
the usual clutter of iterators and temporaries (see the implementation of
fmap above). ’'m happy to say that the new proposed C++ range library
makes the functorial nature of ranges much more pronounced.

The Reader Functor

Now that you might have developed some intuitions — for instance,
functors being some kind of containers — let me show you an example
which at first sight looks very different. Consider a mapping of type a
to the type of a function returning a. We haven’t really talked about
function types in depth — the full categorical treatment is coming —
but we have some understanding of those as programmers. In Haskell,
a function type is constructed using the arrow type constructor (->)
which takes two types: the argument type and the result type. You've
already seen it in infix form, a -> b, but it can equally well be used in
prefix form, when parenthesized:

(->) ab
Just like with regular functions, type functions of more than one argu-
ment can be partially applied. So when we provide just one type argu-

ment to the arrow, it still expects another one. That’s why:
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(->) a

is a type constructor. It needs one more type b to produce a complete
type a -> b. As it stands, it defines a whole family of type constructors
parameterized by a. Let’s see if this is also a family of functors. Dealing
with two type parameters can get a bit confusing, so let’s do some re-
naming. Let’s call the argument type r and the result type a, in line with
our previous functor definitions. So our type constructor takes any type
a and maps it into the type r -> a. To show that it’s a functor, we want
to lift a function a -> b to a function that takes r -> a and returns r
-> b. These are the types that are formed using the type constructor
(=>) r acting on, respectively, a and b. Here’s the type signature of
fmap applied to this case:

fmap :: (a =>b) => (r => a) => (r => b)
We have to solve the following puzzle: given a function f :: a -> b
and a function g :: r -> a, create a function r -> b. There is only

one way we can compose the two functions, and the result is exactly
what we need. So here’s the implementation of our fmap:

instance Functor ((->) r) where
fmap f g=f . g
It just works! If you like terse notation, this definition can be reduced
further by noticing that composition can be rewritten in prefix form:
fmap f g = (.) fg

and the arguments can be omitted to yield a direct equality of two func-
tions:
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fmap = (.)

This combination of the type constructor (->) r with the above imple-
mentation of fmap is called the reader functor.

Functors as Containers

We’ve seen some examples of functors in programming languages that
define general-purpose containers, or at least objects that contain some
value of the type they are parameterized over. The reader functor seems
to be an outlier, because we don’t think of functions as data. But we’ve
seen that pure functions can be memoized, and function execution can
be turned into table lookup. Tables are data. Conversely, because of
Haskell’s laziness, a traditional container, like a list, may actually be im-
plemented as a function. Consider, for instance, an infinite list of natural
numbers, which can be compactly defined as:

nats :: [Integer]
nats = [1..]

In the first line, a pair of square brackets is Haskell’s built-in type con-
structor for lists. In the second line, square brackets are used to create a
list literal. Obviously, an infinite list like this cannot be stored in mem-
ory. The compiler implements it as a function that generates Integers
on demand. Haskell effectively blurs the distinction between data and
code. A list could be considered a function, and a function could be
considered a table that maps arguments to results. The latter can even
be practical if the domain of the function is finite and not too large. It
would not be practical, however, to implement strlen as table lookup,
because there are infinitely many different strings. As programmers, we
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don’t like infinities, but in category theory you learn to eat infinities for
breakfast. Whether it’s a set of all strings or a collection of all possible
states of the Universe, past, present, and future — we can deal with it! So
I like to think of the functor object (an object of the type generated by
an endofunctor) as containing a value or values of the type over which it
is parameterized, even if these values are not physically present there.
One example of a functor is a C++ std: : future, which may at some
point contain a value, but it’s not guaranteed it will; and if you want to
access it, you may block waiting for another thread to finish execution.
Another example is a Haskell I0 object, which may contain user input,
or the future versions of our Universe with “Hello World!” displayed on
the monitor. According to this interpretation, a functor object is some-
thing that may contain a value or values of the type it’s parameterized
upon. Or it may contain a recipe for generating those values. We are not
at all concerned about being able to access the values — that’s totally
optional, and outside of the scope of the functor. All we are interested
in is to be able to manipulate those values using functions. If the values
can be accessed, then we should be able to see the results of this manip-
ulation. If they can’t, then all we care about is that the manipulations
compose correctly and that the manipulation with an identity function
doesn’t change anything. Just to show you how much we don’t care
about being able to access the values inside a functor object, here’s a
type constructor that ignores completely its argument a:

data Const c a = Const ¢
The Const type constructor takes two types, ¢ and a. Just like we did

with the arrow constructor, we are going to partially apply it to create
a functor. The data constructor (also called Const) takes just one value
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of type c. It has no dependence on a. The type of fmap for this type
constructor is:

fmap :: (a -=> b) -> Const c a -> Const c b

Because the functor ignores its type argument, the implementation of
fmap is free to ignore its function argument — the function has nothing
to act upon:

instance Functor (Const c) where
fmap _ (Const v) = Const v

This might be a little clearer in C++ (I never thought I would utter those
words!), where there is a stronger distinction between type arguments
— which are compile-time — and values, which are run-time:

template<class C, class A>
struct Const {
Const(C v) : _v(v) {3}
C _v;

3

The C++ implementation of fmap also ignores the function argument
and essentially re-casts the Const argument without changing its value:

template<class C, class A, class B>
Const<C, B> fmap(std::function<B(A)> f, Const<C, A> c) {
return Const<C, B>{c._v};

}

Despite its weirdness, the Const functor plays an important role in
many constructions. In category theory, it’s a special case of the A,
functor I mentioned earlier — the endo-functor case of a black hole.
We’ll be seeing more of it in the future.
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Functor Composition

It’s not hard to convince yourself that functors between categories com-
pose, just like functions between sets compose. A composition of two
functors, when acting on objects, is just the composition of their re-
spective object mappings; and similarly when acting on morphisms. Af-
ter jumping through two functors, identity morphisms end up as iden-
tity morphisms, and compositions of morphisms finish up as composi-
tions of morphisms. There’s really nothing much to it. In particular, it’s
easy to compose endofunctors. Remember the function maybeTail? I'll
rewrite it using Haskell’s built in implementation of lists:

maybeTail :: [a] -> Maybe [a]
maybeTail [] = Nothing
maybeTail (x:xs) = Just xs

(The empty list constructor that we used to call Nil is replaced with the
empty pair of square brackets []. The Cons constructor is replaced with
the infix operator : (colon).) The result of maybeTail is of a type that’s
a composition of two functors, Maybe and [], acting on a. Each of these
functors is equipped with its own version of fmap, but what if we want
to apply some function f to the contents of the composite: a Maybe list?
We have to break through two layers of functors. We can use fmap to
break through the outer Maybe. But we can’t just send f inside Maybe
because f doesn’t work on lists. We have to send (fmap f) to operate
on the inner list. For instance, let’s see how we can square the elements
of a Maybe list of integers:
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square X = X * X

mis :: Maybe [Int]
mis = Just [1, 2, 3]

mis2 = fmap (fmap square) mis
The compiler, after analyzing the types, will figure out that, for the outer
fmap, it should use the implementation from the Maybe instance, and for

the inner one, the list functor implementation. It may not be immedi-
ately obvious that the above code may be rewritten as:

mis2 = (fmap . fmap) square mis

But remember that fmap may be considered a function of just one argu-
ment:

fmap :: (a =>b) => (f a => f b)

In our case, the second fmap in (fmap . fmap) takes as its argument:

square :: Int -> Int

and returns a function of the type:

[Int] -> [Int]

The first fmap then takes that function and returns a function:

Maybe [Int] -> Maybe [Int]
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Finally, that function is applied to mis. So the composition of two func-
tors is a functor whose fmap is the composition of the corresponding
fmaps. Going back to category theory: It’s pretty obvious that functor
composition is associative (the mapping of objects is associative, and the
mapping of morphisms is associative). And there is also a trivial identity
functor in every category: it maps every object to itself, and every mor-
phism to itself. So functors have all the same properties as morphisms
in some category. But what category would that be? It would have to be
a category in which objects are categories and morphisms are functors.
It’s a category of categories. But a category of all categories would have
to include itself, and we would get into the same kinds of paradoxes that
made the set of all sets impossible. There is, however, a category of all
small categories called Cat (which is big, so it can’t be a member of it-
self). A small category is one in which objects form a set, as opposed to
something larger than a set. Mind you, in category theory, even an in-
finite uncountable set is considered “small” I thought I'd mention these
things because I find it pretty amazing that we can recognize the same
structures repeating themselves at many levels of abstraction. We’ll see
later that functors form categories as well.

Challenges

1. Can we turn the Maybe type constructor into a functor by defin-
ing:

fmap _ _ = Nothing

which ignores both of its arguments? (Hint: Check the functor
laws.)
2. Prove functor laws for the reader functor. Hint: it’s really simple.
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3. Implement the reader functor in your second favorite language
(the first being Haskell, of course).

4. Prove the functor laws for the list functor. Assume that the laws
are true for the tail part of the list you're applying it to (in other
words, use induction).
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Functoriality

OW THAT YOU KNOW what a functor is, and have seen a few exam-

ples, let’s see how we can build larger functors from smaller ones.
In particular it’s interesting to see which type constructors (which cor-
respond to mappings between objects in a category) can be extended to
functors (which include mappings between morphisms).

Bifunctors

Since functors are morphisms in Cat (the category of categories), a lot
of intuitions about morphisms — and functions in particular — apply to
functors as well. For instance, just like you can have a function of two
arguments, you can have a functor of two arguments, or a bifunctor. On
objects, a bifunctor maps every pair of objects, one from category C,
and one from category D, to an object in category E. Notice that this is
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just saying that it’s a mapping from a Cartesian product of categories
CxDtoE.

That’s pretty straightforward. But functoriality means that a bifunctor
has to map morphisms as well. This time, though, it must map a pair of
morphisms, one from C and one from D, to a morphism in E.

Again, a pair of morphisms is just a single morphism in the product
category C x D to E. We define a morphism in a Cartesian product of
categories as a pair of morphisms which goes from one pair of objects
to another pair of objects. These pairs of morphisms can be composed
in the obvious way:

(f.8)=(f.8)=(f=f"8°8)
The composition is associative and it has an identity — a pair of iden-
tity morphisms (id, id). So a Cartesian product of categories is indeed
a category.

An easier way to think about bifunctors would be to consider them
functors in each argument separately. So instead of translating functo-
rial laws — associativity and identity preservation — from functors to
bifunctors, it would be enough to check them separately for each argu-
ment. However, in general, separate functoriality is not enough to prove
joint functoriality. Categories in which joint functoriality fails are called
premonoidal.
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Let’s define a bifunctor in Haskell. In this case all three cate-
gories are the same: the category of Haskell types. A bifunctor is a
type constructor that takes two type arguments. Here’s the definition
of the Bifunctor typeclass taken directly from the library Control.
Bifunctor:

class Bifunctor f where
bimap :: (a >c¢c) > (b >d) >fab->fcd
bimap g h = first g . second h
first :: (a->c) >fab->fchbh
first g = bimap g id
second :: (b ->d) >fab->fad
second = bimap id

bimap

The type variable f represents the bifunctor. You can see that in all type
signatures it’s always applied to two type arguments. The first type sig-
nature defines bimap: a mapping of two functions at once. The result is
a lifted function, (f a b -> f c d), operating on types generated by
the bifunctor’s type constructor. There is a default implementation of
bimap in terms of first and second. (As mentioned before, this doesn’t
always work, because the two maps may not commute, that is first g
. second h may not be the same as second h . first g.)
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The two other type signatures, first and second, are the two fmaps
witnessing the functoriality of f in the first and the second argument,

respectively.

first second

The typeclass definition provides default implementations for both of
them in terms of bimap.

When declaring an instance of Bifunctor, you have a choice of
either implementing bimap and accepting the defaults for first and
second, or implementing both first and second and accepting the de-
fault for bimap (of course, you may implement all three of them, but
then it’s up to you to make sure they are related to each other in this

manner).

Product and Coproduct Bifunctors

An important example of a bifunctor is the categorical product — a prod-
uct of two objects that is defined by a universal construction. If the prod-
uct exists for any pair of objects, the mapping from those objects to the
product is bifunctorial. This is true in general, and in Haskell in particu-
lar. Here’s the Bifunctor instance for a pair constructor — the simplest
product type:
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instance Bifunctor (,) where
bimap f g (x, y) = (f x, g y)

There isn’t much choice: bimap simply applies the first function to the
first component, and the second function to the second component of a
pair. The code pretty much writes itself, given the types:

bimap :: (a > ¢) => (b => d) -> (a, b) > (c, d)

The action of the bifunctor here is to make pairs of types, for instance:
() ab=(a, b)

By duality, a coproduct, if it’s defined for every pair of objects in a cat-
egory, is also a bifunctor. In Haskell, this is exemplified by the Either
type constructor being an instance of Bifunctor:

instance Bifunctor Either where
bimap f _ (Left x) = Left (f x)
bimap _ g (Right y) = Right (g y)

This code also writes itself.

Now, remember when we talked about monoidal categories? A
monoidal category defines a binary operator acting on objects, together
with a unit object. I mentioned that Set is a monoidal category with re-
spect to Cartesian product, with the singleton set as a unit. And it’s also
a monoidal category with respect to disjoint union, with the empty set
as a unit. What I haven’t mentioned is that one of the requirements for
a monoidal category is that the binary operator be a bifunctor. This is
a very important requirement — we want the monoidal product to be
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compatible with the structure of the category, which is defined by mor-
phisms. We are now one step closer to the full definition of a monoidal
category (we still need to learn about naturality, before we can get
there).

Functorial Algebraic Data Types

We’ve seen several examples of parameterized data types that turned
out to be functors — we were able to define fmap for them. Complex data
types are constructed from simpler data types. In particular, algebraic
data types (ADTS) are created using sums and products. We have just
seen that sums and products are functorial. We also know that functors
compose. So if we can show that the basic building blocks of ADTs are
functorial, we’ll know that parameterized ADTs are functorial too.

So what are the building blocks of parameterized algebraic data
types? First, there are the items that have no dependency on the type
parameter of the functor, like Nothing in Maybe, or Nil in List. They are
equivalent to the Const functor. Remember, the Const functor ignores
its type parameter (really, the second type parameter, which is the one
of interest to us, the first one being kept constant).

Then there are the elements that simply encapsulate the type param-
eter itself, like Just in Maybe. They are equivalent to the identity functor.
I mentioned the identity functor previously, as the identity morphism
in Cat, but didn’t give its definition in Haskell. Here it is:

data Identity a = Identity a
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instance Functor Identity where
fmap f (Identity x) = Identity (f x)

You can think of Identity as the simplest possible container that always
stores just one (immutable) value of type a.

Everything else in algebraic data structures is constructed from
these two primitives using products and sums.

With this new knowledge, let’s have a fresh look at the Maybe type
constructor:

data Maybe a = Nothing | Just a

It’s a sum of two types, and we now know that the sum is functorial.
The first part, Nothing can be represented as a Const () acting on a
(the first type parameter of Const is set to unit — later we’ll see more
interesting uses of Const). The second part is just a different name for
the identity functor. We could have defined Maybe, up to isomorphism,
as:

type Maybe a = Either (Const () a) (Identity a)

So Maybe is the composition of the bifunctor Either with two functors,
Const () and Identity.(Const is really a bifunctor, but here we always
use it partially applied.)

We’ve already seen that a composition of functors is a functor —
we can easily convince ourselves that the same is true of bifunctors.
All we need is to figure out how a composition of a bifunctor with two
functors works on morphisms. Given two morphisms, we simply lift one
with one functor and the other with the other functor. We then lift the
resulting pair of lifted morphisms with the bifunctor.
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We can express this composition in Haskell. Let’s define a data type
that is parameterized by a bifunctor bf (it’s a type variable that is a type
constructor that takes two types as arguments), two functors fu and gu
(type constructors that take one type variable each), and two regular
types a and b. We apply fu to a and gu to b, and then apply bf to the
resulting two types:

newtype BiComp bf fu gu a b = BiComp (bf (fu a) (gu b))

That’s the composition on objects, or types. Notice how in Haskell we
apply type constructors to types, just like we apply functions to argu-
ments. The syntax is the same.

If you’re getting a little lost, try applying BiComp to Either, Const
(), Identity, a, and b, in this order. You will recover our bare-bone
version of Maybe b (a is ignored).

The new data type BiComp is a bifunctor in a and b, but only if bf is
itselfa Bifunctor and fu and gu are Functors. The compiler must know
that there will be a definition of bimap available for bf, and definitions
of fmap for fu and gu. In Haskell, this is expressed as a precondition in
the instance declaration: a set of class constraints followed by a double
arrow:

instance (Bifunctor bf, Functor fu, Functor gu) =>
Bifunctor (BiComp bf fu gu) where
bimap f1 f2 (BiComp x) = BiComp ((bimap (fmap f1) (fmap
o f2)) x)

The implementation of bimap for BiComp is given in terms of bimap for
bf and the two fmaps for fu and gu. The compiler automatically infers all
the types and picks the correct overloaded functions whenever BiComp
is used.
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The x in the definition of bimap has the type:

bf (fu a) (gu b)

which is quite a mouthful. The outer bimap breaks through the outer bf
layer, and the two fmaps dig under fu and gu, respectively. If the types
of f1 and f2 are:

f1 :: a > a'
f2 :: b > b'

then the final result is of the type bf (fu a') (gu b'):

bimap :: (fua -> fu a') => (gub ->gub')
-> bf (fu a) (gu b) => bf (fu a') (gu b')

If you like jigsaw puzzles, these kinds of type manipulations can provide
hours of entertainment.

So it turns out that we didn’t have to prove that Maybe was a functor
— this fact followed from the way it was constructed as a sum of two
functorial primitives.

A perceptive reader might ask the question: If the derivation of the
Functor instance for algebraic data types is so mechanical, can’t it be
automated and performed by the compiler? Indeed, it can, and it is. You
need to enable a particular Haskell extension by including this line at
the top of your source file:

and then add deriving Functor to your data structure:
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data Maybe a = Nothing | Just a deriving Functor

and the corresponding fmap will be implemented for you.

The regularity of algebraic data structures makes it possible to de-
rive instances not only of Functor but of several other type classes, in-
cluding the Eq type class I mentioned before. There is also the option of
teaching the compiler to derive instances of your own typeclasses, but
that’s a bit more advanced. The idea though is the same: You provide
the behavior for the basic building blocks and sums and products, and
let the compiler figure out the rest.

Functors in C++

If you are a C++ programmer, you obviously are on your own as far as
implementing functors goes. However, you should be able to recognize
some types of algebraic data structures in C++. If such a data structure is
made into a generic template, you should be able to quickly implement
fmap for it.

Let’s have a look at a tree data structure, which we would define in
Haskell as a recursive sum type:

data Tree a = Leaf a | Node (Tree a) (Tree a)
deriving Functor

As I mentioned before, one way of implementing sum types in C++ is
through class hierarchies. It would be natural, in an object-oriented lan-
guage, to implement fmap as a virtual function of the base class Functor
and then override it in all subclasses. Unfortunately this is impossible
because fmap is a template, parameterized not only by the type of the
object it’s acting upon (the this pointer) but also by the return type of
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the function that’s been applied to it. Virtual functions cannot be tem-
platized in C++. We’ll implement fmap as a generic free function, and
we’ll replace pattern matching with dynamic_cast.

The base class must define at least one virtual function in order to
support dynamic casting, so we’ll make the destructor virtual (which is
a good idea in any case):

template<class T>
struct Tree {
virtual ~Tree() {3};

3
The Leaf is just an Identity functor in disguise:

template<class T>
struct Leaf : public Tree<T> {
T _label;
Leaf (T 1) : _label(l) {3}
b

The Node is a product type:

template<class T>
struct Node : public Tree<T> {

Tree<T> * _left;

Tree<T> * _right;

Node(Tree<T> % 1, Tree<T> * r) : _left(l), _right(r) {3}
b

When implementing fmap we take advantage of dynamic dispatching
on the type of the Tree. The Leaf case applies the Identity version
of fmap, and the Node case is treated like a bifunctor composed with
two copies of the Tree functor. As a C++ programmer, you're probably
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not used to analyzing code in these terms, but it’s a good exercise in
categorical thinking.

template<class A, class B>
Tree<B> * fmap(std::function<B(A)> f, Tree<A> * t) {
Leaf<A> x pl = dynamic_cast <Leaf<A>*>(t);
if (pl)
return new Leaf<B>(f (pl->_label));
Node<A> * pn = dynamic_cast<Node<A>*>(t);
if (pn)
return new Node<B>( fmap<A>(f, pn->_left)
, fmap<A>(f, pn->_right));
return nullptr;

For simplicity, I decided to ignore memory and resource management
issues, but in production code you would probably use smart pointers
(unique or shared, depending on your policy).

Compare it with the Haskell implementation of fmap:

instance Functor Tree where

fmap f (Leaf a) = Leaf (f a)
fmap f (Node t t') = Node (fmap f t) (fmap f t')

This implementation can also be automatically derived by the compiler.

The Writer Functor

I promised that I would come back to the Kleisli category I described
earlier. Morphisms in that category were represented as “embellished”
functions returning the Writer data structure.
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type Writer a = (a, String)

I said that the embellishment was somehow related to endofunctors.
And, indeed, the Writer type constructor is functorial in a. We don’t
even have to implement fmap for it, because it’s just a simple product
type.

But what’s the relation between a Kleisli category and a functor — in
general? A Kleisli category, being a category, defines composition and
identity. Let me remind you that the composition is given by the fish
operator:

(>=>) :: (a => Writer b) => (b -> Writer c) -> (a -> Writer c¢)
ml >=> m2 = \x ->
let (y, s1) = ml x
(z, s2) =m2 y
in (z, s1 ++ s2)

and the identity morphism by a function called return:
return :: a -> Writer a

return x = (x, "")

It turns out that, if you look at the types of these two functions long
enough (and I mean, long enough), you can find a way to combine them
to produce a function with the right type signature to serve as fmap.
Like this:

fmap f = id >=> (\x -> return (f x))

Here, the fish operator combines two functions: one of them is the fa-
miliar id, and the other is a lambda that applies return to the result
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of acting with f on the lambda’s argument. The hardest part to wrap
your brain around is probably the use of id. Isn’t the argument to the
fish operator supposed to be a function that takes a “normal” type and
returns an embellished type? Well, not really. Nobody says that a in a
-> Writer b must be a “normal” type. It’s a type variable, so it can be
anything, in particular it can be an embellished type, like Writer b.

So id will take Writer a and turn it into Writer a. The fish oper-
ator will fish out the value of a and pass it as x to the lambda. There, f
will turn it into a b and return will embellish it, making it Writer b.
Putting it all together, we end up with a function that takes Writer a
and returns Writer b, exactly what fmap is supposed to produce.

Notice that this argument is very general: you can replace Writer
with any type constructor. As long as it supports a fish operator and
return, you can define fmap as well. So the embellishment in the Kleisli
category is always a functor. (Not every functor, though, gives rise to a
Kleisli category.)

You might wonder if the fmap we have just defined is the same fmap
the compiler would have derived for us with deriving Functor. Inter-
estingly enough, it is. This is due to the way Haskell implements poly-
morphic functions. It’s called parametric polymorphism, and it’s a source
of so called theorems for free. One of those theorems says that, if there
is an implementation of fmap for a given type constructor, one that pre-
serves identity, then it must be unique.

Covariant and Contravariant Functors

Now that we’ve reviewed the writer functor, let’s go back to the reader
functor. It was based on the partially applied function-arrow type con-
structor:
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->)r

We can rewrite it as a type synonym:

type Reader r a = r -> a

for which the Functor instance, as we’ve seen before, reads:

instance Functor (Reader r) where
fmap f g=f . g

But just like the pair type constructor, or the Either type constructor,
the function type constructor takes two type arguments. The pair and
Either were functorial in both arguments — they were bifunctors. Is
the function constructor a bifunctor too?

Let’s try to make it functorial in the first argument. We’ll start with a
type synonym — it’s just like the Reader but with the arguments flipped:

type Op r a=a ->r

This time we fix the return type, r, and vary the argument type, a. Let’s
see if we can somehow match the types in order to implement fmap,
which would have the following type signature:

fmap :: (a =>b) > (a->r) > (b ->r)

With just two functions taking a and returning, respectively, b and r,
there is simply no way to build a function taking b and returning r! It
would be different if we could somehow invert the first function, so that
it took b and returned a instead. We can’t invert an arbitrary function,
but we can go to the opposite category.
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A short recap: For every category C there is a dual category CP. It’s
a category with the same objects as C, but with all the arrows reversed.
Consider a functor that goes between C°P and some other category
D:
F:C? 5D

Such a functor maps a morphism f°° :: a — b in C° to the morphism
Ff° :: Fa — Fb in D. But the morphism f°P secretly corresponds
to some morphism f :: b — a in the original category C. Notice the
inversion.

Now, F is a regular functor, but there is another mapping we can
define based on F, which is not a functor — let’s call it G. It’s a mapping
from C to D. It maps objects the same way F does, but when it comes to
mapping morphisms, it reverses them. It takes a morphism f :: b — a
in C, maps it first to the opposite morphism f°? :: @ — b and then uses
the functor F on it, to get Ff°? :: Fa — F b.

Considering that Fa is the same as Ga and Fb is the same as Gb,
the whole trip can be described as: Gf :: (b - a) — (Ga — Gb)
It’s a “functor with a twist” A mapping of categories that inverts the
direction of morphisms in this manner is called a contravariant functor.
Notice that a contravariant functor is just a regular functor from the
opposite category. The regular functors, by the way — the kind we’ve
been studying thus far — are called covariant functors.
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Here’s the typeclass defining a contravariant functor (really, a con-
travariant endofunctor) in Haskell:

class Contravariant f where
contramap :: (b -=> a) => (f a => f b)
Our type constructor Op is an instance of it:

instance Contravariant (Op r) where

contramap f g =g . f

Notice that the function f inserts itself before (that is, to the right of)
the contents of Op — the function g.

The definition of contramap for Op may be made even terser, if you
notice that it’s just the function composition operator with the argu-
ments flipped. There is a special function for flipping arguments, called
flip:

flip :: (a=>b ->c) > (b ->a ->c¢)
flipfyx=1~fxy

With it, we get:
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contramap = flip (.)

Profunctors

We’ve seen that the function-arrow operator is contravariant in its first
argument and covariant in the second. Is there a name for such a beast?
It turns out that, if the target category is Set, such a beast is called a
profunctor. Because a contravariant functor is equivalent to a covariant
functor from the opposite category, a profunctor is defined as:

C° xD — Set

Since, to first approximation, Haskell types are sets, we apply the name
Profunctor to a type constructor p of two arguments, which is contra-
functorial in the first argument and functorial in the second. Here’s the
appropriate typeclass taken from the Data.Profunctor library:

class Profunctor p where
dimap :: (@ > b) -=> (¢ =>d) =>pbc->pad
dimap f g = lmap f . rmap g
Imap :: (a =>b) >pbc->pac
Imap f = dimap f id
rmap :: (b =>c) >pab->pac
rmap = dimap id

All three functions come with default implementations. Just like with
Bifunctor, when declaring an instance of Profunctor, you have a
choice of either implementing dimap and accepting the defaults for 1map
and rmap, or implementing both 1map and rmap and accepting the de-
fault for dimap.
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dimap

Now we can assert that the function-arrow operator is an instance of a
Profunctor:

instance Profunctor (->) where
dimap ab c¢d bc = cd . bc . ab
Imap = flip (.)
rmap = (.)

Profunctors have their application in the Haskell lens library. We’ll see
them again when we talk about ends and coends.

The Hom-Functor

The above examples are the reflection of a more general statement that
the mapping that takes a pair of objects a and b and assigns to it the
set of morphisms between them, the hom-set C(a, ), is a functor. It is a
functor from the product category C°? x C to the category of sets, Set.
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Let’s define its action on morphisms. A morphism in C°? x C is a
pair of morphisms from C:
fa —a
gub-ob
The lifting of this pair must be a morphism (a function) from the set
C(a,b) to the set C(a’,b”). Just pick any element h of C(a,b) (it’s a mor-
phism from a to b) and assign to it:

gohef

which is an element of C(a’,b”).
As you can see, the hom-functor is a special case of a profunctor.

Challenges

1. Show that the data type:
data Pair a b = Pair a b

is a bifunctor. For additional credit implement all three meth-
ods of Bifunctor and use equational reasoning to show that
these definitions are compatible with the default implementations
whenever they can be applied.

2. Show the isomorphism between the standard definition of Maybe
and this desugaring:

type Maybe' a = Either (Const () a) (Identity a)

Hint: Define two mappings between the two implementations.
For additional credit, show that they are the inverse of each other
using equational reasoning.
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3. Let’s try another data structure. I call it a PreList because it’s a
precursor to a List. It replaces recursion with a type parameter
b.

data PreList a b = Nil | Cons a b

You could recover our earlier definition of a List by recursively
applying PreList to itself (we’ll see how it’s done when we talk
about fixed points).
Show that PreList is an instance of Bifunctor.

4. Show that the following data types define bifunctors in a and b:

data K2 c a b = K2 ¢

data Fst a b Fst a

data Snd a b

Snd b

For additional credit, check your solutions against Conor
McBride’s paper Clowns to the Left of me, Jokers to the Right'.
5. Define a bifunctor in a language other than Haskell. Implement
bimap for a generic pair in that language.
6. Should std: :map be considered a bifunctor or a profunctor in the
two template arguments Key and T? How would you redesign this
data type to make it so?

1http://strictlypositive.org/CJ.pdf
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Function Types

0 FAR I've been glossing over the meaning of function types. A func-
tion type is different from other types.

Take Integer, for instance: It’s just a set of integers. Bool is a two
element set. But a function type a — b is more than that: it’s a set of
morphisms between objects a and b. A set of morphisms between two
objects in any category is called a hom-set. It just so happens that in
the category Set every hom-set is itself an object in the same category
—because it is, after all, a set.
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Hom-set in Set is just a set

The same is not true of other categories where hom-sets are external to
a category. They are even called external hom-sets.

c
(s

Hom-set in category C is an external set

&

It’s the self-referential nature of the category Set that makes function
types special. But there is a way, at least in some categories, to construct
objects that represent hom-sets. Such objects are called internal hom-
sets.
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Universal Construction

Let’s forget for a moment that function types are sets and try to con-
struct a function type, or more generally, an internal hom-set, from
scratch. As usual, we’ll take our cues from the Set category, but care-
fully avoid using any properties of sets, so that the construction will
automatically work for other categories.

A function type may be considered a composite type because of its
relationship to the argument type and the result type. We've already
seen the constructions of composite types — those that involved rela-
tionships between objects. We used universal constructions to define
a product and coproduct types. We can use the same trick to define a
function type. We will need a pattern that involves three objects: the
function type that we are constructing, the argument type, and the re-
sult type.

The obvious pattern that connects these three types is called func-
tion application or evaluation. Given a candidate for a function type,
let’s call it z (notice that, if we are not in the category Set, this is just
an object like any other object), and the argument type a (an object),
the application maps this pair to the result type b (an object). We have
three objects, two of them fixed (the ones representing the argument
type and the result type).

We also have the application, which is a mapping. How do we incor-
porate this mapping into our pattern? If we were allowed to look inside
objects, we could pair a function f (an element of z) with an argument
x (an element of @) and map it to fx (the application of f to x, which is
an element of b).
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In Set we can pick a function f from a set of functions z and we can pick an argument x from the
set (type) a. We get an element fx in the set (type) b.

But instead of dealing with individual pairs (f, x), we can as well talk
about the whole product of the function type z and the argument type a.
The product z x a is an object, and we can pick, as our application mor-
phism, an arrow g from that object to b. In Set, g would be the function
that maps every pair (f, x) to fx.

So that’s the pattern: a product of two objects z and a connected to
another object b by a morphism g.

=

A pattern of objects and morphisms that is the starting point of the universal construction

Is this pattern specific enough to single out the function type using a
universal construction? Not in every category. But in the categories of
interest to us it is. And another question: Would it be possible to define a
function object without first defining a product? There are categories in
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which there is no product, or there isn’t a product for all pairs of objects.
The answer is no: there is no function type, if there is no product type.
We’ll come back to this later when we talk about exponentials.

Let’s review the universal construction. We start with a pattern of
objects and morphisms. That’s our imprecise query, and it usually yields
lots and lots of hits. In particular, in Set, pretty much everything is con-
nected to everything. We can take any object z, form its product with
a, and there’s going to be a function from it to b (except when b is an
empty set).

That’s when we apply our secret weapon: ranking. This is usually
done by requiring that there be a unique mapping between candidate
objects — a mapping that somehow factorizes our construction. In our
case, we'll decree that z together with the morphism g from z x a to b
is better than some other z’ with its own application g’, if and only if
there is a unique mapping h from z’ to z such that the application of
g’ factors through the application of g. (Hint: Read this sentence while
looking at the picture.)

S/ z/xa
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Establishing a ranking between candidates for the function object

Now here’s the tricky part, and the main reason I postponed this par-
ticular universal construction till now. Given the morphism h :: 2’ — z,
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we want to close the diagram that has both z” and z crossed with a.
What we really need, given the mapping h from z’ to z, is a mapping
from z’ x a to z x a. And now, after discussing the functoriality of the
product, we know how to do it. Because the product itself is a functor
(more precisely an endo-bi-functor), it’s possible to lift pairs of mor-
phisms. In other words, we can define not only products of objects but
also products of morphisms.

Since we are not touching the second component of the product
z’ x a, we will lift the pair of morphisms (h, id), where id is an identity
ona.

So, here’s how we can factor one application, g, out of another ap-
plication g’:

g =ge°(hxid)

The key here is the action of the product on morphisms.

The third part of the universal construction is selecting the object
that is universally the best. Let’s call this object a = b (think of this
as a symbolic name for one object, not to be confused with a Haskell
typeclass constraint — I'll discuss different ways of naming it later). This
object comes with its own application — a morphism from (a = b) x a
to b — which we will call eval. The object a = b is the best if any other
candidate for a function object can be uniquely mapped to it in such a
way that its application morphism g factorizes through eval. This object
is better than any other object according to our ranking.
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The definition of the universal function object. This is the same diagram as above, but now the
object a = b is universal.

Formally:

A function object from a to b is an object a = b together with the
morphism
eval :: ((a=b)xa) > b

such that for any other object z with a morphism
gizxa—b
there is a unique morphism
h:z—(a=0b)
that factors g through eval:

g =evale (hxid)

Of course, there is no guarantee that such an object a = b exists for
any pair of objects a and b in a given category. But it always does in Set.
Moreover, in Set, this object is isomorphic to the hom-set Set(a, b).
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This is why, in Haskell, we interpret the function type a -> b as the
categorical function object a = b.

Currying

Let’s have a second look at all the candidates for the function object.
This time, however, let’s think of the morphism g as a function of two
variables, z and a.

gizxa—b

Being a morphism from a product comes as close as it gets to being a
function of two variables. In particular, in Set, g is a function from pairs
of values, one from the set z and one from the set a.

On the other hand, the universal property tells us that for each such
g there is a unique morphism A that maps z to a function object a = b.

h::z—)(a:b)

In Set, this just means that h is a function that takes one variable of
type z and returns a function from a to b. That makes h a higher order
function. Therefore the universal construction establishes a one-to-one
correspondence between functions of two variables and functions of
one variable returning functions. This correspondence is called curry-
ing, and h is called the curried version of g.

This correspondence is one-to-one, because given any g there is a
unique h, and given any h you can always recreate the two-argument
function g using the formula:

g=evale (hxid)
The function g can be called the uncurried version of h.
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Currying is essentially built into the syntax of Haskell. A function
returning a function:

a-> (b -> o)
is often thought of as a function of two variables. That’s how we read
the un-parenthesized signature:

a->b->c

This interpretation is apparent in the way we define multi-argument
functions. For instance:

catstr :: String -> String -> String

catstr s s' = s ++ s'
The same function can be written as a one-argument function returning
a function — a lambda:

catstr' s = \s' -> s ++ s'

These two definitions are equivalent, and either can be partially applied
to just one argument, producing a one-argument function, as in:

greet :: String -> String
greet = catstr "Hello "

Strictly speaking, a function of two variables is one that takes a pair (a
product type):
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(a, b) => ¢

It’s trivial to convert between the two representations, and the two
(higher-order) functions that do it are called, unsurprisingly, curry and
uncurry:

curry :: ((a, b) =>¢c) -=> (a ->b -> ¢)
curry f a b =1f (a, b)

and

uncurry :: (a => b ->c¢) => ((a, b) => ©)
uncurry f (a, b) = f ab

Notice that curry is the factorizer for the universal construction of the
function object. This is especially apparent if it’s rewritten in this form:

factorizer :: ((a, b) =>¢c) > (a -=> (b -> ¢))
factorizer g = \a => (\b -> g (a, b))

(As a reminder: A factorizer produces the factorizing function from a
candidate.)

In non-functional languages, like C++, currying is possible but
nontrivial. You can think of multi-argument functions in C++ as cor-
responding to Haskell functions taking tuples (although, to confuse
things even more, in C++ you can define functions that take an explicit
std: : tuple, as well as variadic functions, and functions taking initial-
izer lists).

You can partially apply a C++ function using the template
std: :bind. For instance, given a function of two strings:
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std::string catstr(std::string s1, std::string s2) {
return s1 + s2;

you can define a function of one string:

using namespace std::placeholders;

auto greet = std::bind(catstr, "Hello ", _1);
std::cout << greet("Haskell Curry");

Scala, which is more functional than C++ or Java, falls somewhere in
between. If you anticipate that the function you’re defining will be par-
tially applied, you define it with multiple argument lists:

def catstr(sl1: String)(s2: String) = s1 + s2

Of course that requires some amount of foresight or prescience on the
part of a library writer.

Exponentials

In mathematical literature, the function object, or the internal hom-
object between two objects a and b, is often called the exponential and
denoted by b“. Notice that the argument type is in the exponent. This
notation might seem strange at first, but it makes perfect sense if you
think of the relationship between functions and products. We’ve already
seen that we have to use the product in the universal construction of the
internal hom-object, but the connection goes deeper than that.

This is best seen when you consider functions between finite types
— types that have a finite number of values, like Bool, Char, or even Int
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or Double. Such functions, at least in principle, can be fully memoized
or turned into data structures to be looked up. And this is the essence of
the equivalence between functions, which are morphisms, and function
types, which are objects.

For instance a (pure) function from Bool is completely specified by
a pair of values: one corresponding to False, and one corresponding to
True. The set of all possible functions from Bool to, say, Int is the set
of all pairs of Ints. This is the same as the product Int x Int or, being
a little creative with notation, Int?.

For another example, let’s look at the C++ type char, which contains
256 values (Haskell Char is larger, because Haskell uses Unicode). There
are several functions in the part of the C++ Standard Library that are
usually implemented using lookups. Functions like isupper or isspace
are implemented using tables, which are equivalent to tuples of 256
Boolean values. A tuple is a product type, so we are dealing with prod-
ucts of 256 Booleans: bool x bool x bool x ... x bool. We know
from arithmetics that an iterated product defines a power. If you “mul-
tiply” bool by itself 256 (or char) times, you get bool to the power of
char, or bool¢har,

How many values are there in the type defined as 256-tuples of
bool? Exactly 22%°. This is also the number of different functions from
char to bool, each function corresponding to a unique 256-tuple. You
can similarly calculate that the number of functions from bool to char
is 2562, and so on. The exponential notation for function types makes
perfect sense in these cases.

We probably wouldn’t want to fully memoize a function from int
or double. But the equivalence between functions and data types, if
not always practical, is there. There are also infinite types, for instance
lists, strings, or trees. Eager memoization of functions from those types
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would require infinite storage. But Haskell is a lazy language, so the
boundary between lazily evaluated (infinite) data structures and func-
tions is fuzzy. This function vs. data duality explains the identification of
Haskell’s function type with the categorical exponential object — which
corresponds more to our idea of data.

Cartesian Closed Categories

Although I will continue using the category of sets as a model for types
and functions, it’s worth mentioning that there is a larger family of cat-
egories that can be used for that purpose. These categories are called
Cartesian closed, and Set is just one example of such a category.

A Cartesian closed category must contain:

1. The terminal object,
2. A product of any pair of objects, and
3. An exponential for any pair of objects.

If you consider an exponential as an iterated product (possibly infinitely
many times), then you can think of a Cartesian closed category as one
supporting products of an arbitrary arity. In particular, the terminal ob-
ject can be thought of as a product of zero objects — or the zero-th power
of an object.

What’s interesting about Cartesian closed categories from the per-
spective of computer science is that they provide models for the simply
typed lambda calculus, which forms the basis of all typed programming
languages.

The terminal object and the product have their duals: the initial ob-
ject and the coproduct. A Cartesian closed category that also supports
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those two, and in which product can be distributed over coproduct

ax(b+c)=axb+axc
(b+c)xa=bxa+cxa

is called a bicartesian closed category. We’ll see in the next section that
bicartesian closed categories, of which Set is a prime example, have
some interesting properties.

Exponentials and Algebraic Data Types

The interpretation of function types as exponentials fits very well into
the scheme of algebraic data types. It turns out that all the basic iden-
tities from high-school algebra relating numbers zero and one, sums,
products, and exponentials hold pretty much unchanged in any bicarte-
sian closed category theory for, respectively, initial and final objects,
coproducts, products, and exponentials. We don’t have the tools yet to
prove them (such as adjunctions or the Yoneda lemma), but I'll list them
here nevertheless as a source of valuable intuitions.

Zeroth Power
a® =1

In the categorical interpretation, we replace 0 with the initial object, 1
with the final object, and equality with isomorphism. The exponential is
the internal hom-object. This particular exponential represents the set
of morphisms going from the initial object to an arbitrary object a. By
the definition of the initial object, there is exactly one such morphism,
so the hom-set C(0, a) is a singleton set. A singleton set is the terminal
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object in Set, so this identity trivially works in Set. What we are saying
is that it works in any bicartesian closed category.

In Haskell, we replace 0 with Void; 1 with the unit type (); and the
exponential with function type. The claim is that the set of functions
from Void to any type a is equivalent to the unit type — which is a
singleton. In other words, there is only one function Void -> a. We’ve
seen this function before: it’s called absurd.

This is a little bit tricky, for two reasons. One is that in Haskell we
don’t really have uninhabited types — every type contains the “result of
a never ending calculation,” or the bottom. The second reason is that all
implementations of absurd are equivalent because, no matter what they
do, nobody can ever execute them. There is no value that can be passed
to absurd. (And if you manage to pass it a never ending calculation, it
will never return!)

Powers of One
19 =1

This identity, when interpreted in Set, restates the definition of the ter-
minal object: There is a unique morphism from any object to the ter-
minal object. In general, the internal hom-object from a to the terminal
object is isomorphic to the terminal object itself.

In Haskell, there is only one function from any type a to unit. We've
seen this function before — it’s called unit. You can also think of it as
the function const partially applied to ().

First Power

148



This is a restatement of the observation that morphisms from the termi-
nal object can be used to pick “elements” of the object a. The set of such
morphisms is isomorphic to the object itself. In Set, and in Haskell, the
isomorphism is between elements of the set a and functions that pick
those elements, () -> a.

Exponentials of Sums

b+ b

"t =a’ xd°

Categorically, this says that the exponential from a coproduct of two
objects is isomorphic to a product of two exponentials. In Haskell, this
algebraic identity has a very practical, interpretation. It tells us that a
function from a sum of two types is equivalent to a pair of functions
from individual types. This is just the case analysis that we use when
defining functions on sums. Instead of writing one function definition
with a case statement, we usually split it into two (or more) functions
dealing with each type constructor separately. For instance, take a func-
tion from the sum type (Either Int Double):

f :: Either Int Double -> String

It may be defined as a pair of functions from, respectively, Int and
Double:

f (Left n) = if n < 0 then "Negative int" else "Positive int"
f (Right x) = if x < 0.0 then "Negative double" else "Positive double"

Here, nis an Int and x is a Double.
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Exponentials of Exponentials
(ab)c = gbxe

This is just a way of expressing currying purely in terms of exponential
objects. A function returning a function is equivalent to a function from
a product (a two-argument function).

Exponentials over Products
(axb)’ =a"xb°

In Haskell: A function returning a pair is equivalent to a pair of func-
tions, each producing one element of the pair.

It’s pretty incredible how those simple high-school algebraic iden-
tities can be lifted to category theory and have practical application in
functional programming.

Curry-Howard Isomorphism

I have already mentioned the correspondence between logic and alge-
braic data types. The Void type and the unit type () correspond to false
and true. Product types and sum types correspond to logical conjunction
A (AND) and disjunction v (OR). In this scheme, the function type we
have just defined corresponds to logical implication =-. In other words,
the type a -> b can be read as “if a then b

According to the Curry-Howard isomorphism, every type can be
interpreted as a proposition — a statement or a judgment that may be
true or false. Such a proposition is considered true if the type is inhab-
ited and false if it isn’t. In particular, a logical implication is true if the
function type corresponding to it is inhabited, which means that there
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exists a function of that type. An implementation of a function is there-
fore a proof of a theorem. Writing programs is equivalent to proving
theorems. Let’s see a few examples.

Let’s take the function eval we have introduced in the definition of
the function object. Its signature is:

eval :: ((a@a->b), a) > b

It takes a pair consisting of a function and its argument and produces
a result of the appropriate type. It’s the Haskell implementation of the
morphism:

eval :: (a=b)xa—b

which defines the function type a = b (or the exponential object b?).
Let’s translate this signature to a logical predicate using the Curry-
Howard isomorphism:

((a=Db)na)=1D

Here’s how you can read this statement: If it’s true that b follows from
a, and a is true, then b must be true. This makes perfect intuitive sense
and has been known since antiquity as modus ponens. We can prove this
theorem by implementing the function:

eval :: ((a -=>b), a) => b
eval (f, x) = f x

If you give me a pair consisting of a function f taking a and returning b,
and a concrete value x of type a, I can produce a concrete value of type
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b by simply applying the function f to x. By implementing this func-
tion I have just shown that the type ((a -> b), a) -> b is inhabited.
Therefore modus ponens is true in our logic.

How about a predicate that is blatantly false? For instance: if a or b
is true then a must be true.

avb=a

This is obviously wrong because you can choose an a that is false and a
b that is true, and that’s a counter-example.

Mapping this predicate into a function signature using the Curry-
Howard isomorphism, we get:

Either a b -> a

Try as you may, you can’t implement this function — you can’t produce
a value of type a if you are called with the Right value. (Remember, we
are talking about pure functions.)

Finally, we come to the meaning of the absurd function:

absurd :: Void -> a
Considering that Void translates into false, we get:

false = a

Anything follows from falsehood (ex falso quodlibet). Here’s one possi-
ble proof (implementation) of this statement (function) in Haskell:

absurd (Void a) = absurd a

where Void is defined as:
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newtype Void = Void Void

As always, the type Void is tricky. This definition makes it impossible
to construct a value because in order to construct one, you would need
to provide one. Therefore, the function absurd can never be called.

These are all interesting examples, but is there a practical side to
Curry-Howard isomorphism? Probably not in everyday programming.
But there are programming languages like Agda or Coq, which take
advantage of the Curry-Howard isomorphism to prove theorems.

Computers are not only helping mathematicians do their work —
they are revolutionizing the very foundations of mathematics. The latest
hot research topic in that area is called Homotopy Type Theory, and is
an outgrowth of type theory. It’s full of Booleans, integers, products and
coproducts, function types, and so on. And, as if to dispel any doubts,
the theory is being formulated in Coq and Agda. Computers are revo-
lutionizing the world in more than one way.
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Natural Transformations

E TALKED ABOUT functors as mappings between categories that
preserve their structure.

A functor “embeds” one category in another. It may collapse multi-
ple things into one, but it never breaks connections. One way of think-
ing about it is that with a functor we are modeling one category inside
another. The source category serves as a model, a blueprint, for some
structure that’s part of the target category.
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There may be many ways of embedding one category in another. Some-
times they are equivalent, sometimes very different. One may collapse
the whole source category into one object, another may map every ob-
ject to a different object and every morphism to a different morphism.
The same blueprint may be realized in many different ways. Natural
transformations help us compare these realizations. They are mappings
of functors — special mappings that preserve their functorial nature.

Consider two functors F and G between categories C and D. If you
focus on just one object a in C, it is mapped to two objects: Fa and Ga.
A mapping of functors should therefore map Fa to Ga.

Notice that Fa and Ga are objects in the same category D. Mappings be-
tween objects in the same category should not go against the grain of
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the category. We don’t want to make artificial connections between ob-
jects. So it’s natural to use existing connections, namely morphisms. A
natural transformation is a selection of morphisms: for every object a, it
picks one morphism from Fa to Ga. If we call the natural transformation
@, this morphism is called the component of « at a, or a,,.

o, : Fa— Ga

Keep in mind that a is an object in C while ¢, is a morphism in D.

If, for some a, there is no morphism between Fa and Ga in D, there
can be no natural transformation between F and G.

Of course that’s only half of the story, because functors not only
map objects, they map morphisms as well. So what does a natural trans-
formation do with those mappings? It turns out that the mapping of
morphisms is fixed — under any natural transformation between F and
G, F f must be transformed into G f. What’s more, the mapping of mor-
phisms by the two functors drastically restricts the choices we have in
defining a natural transformation that’s compatible with it. Consider
a morphism f between two objects a and b in C. It’s mapped to two
morphisms, F f and Gf in D:

Ff: Fa— Fb
Gf ::Ga— Gb

The natural transformation a provides two additional morphisms that
complete the diagram in D:

o, :: Fa — Ga

ap :: Fb — Gb
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Now we have two ways of getting from Fa to Gb. To make sure that
they are equal, we must impose the naturality condition that holds for
any f:

Gfea;=ap°Ff

The naturality condition is a pretty stringent requirement. For instance,
if the morphism F f is invertible, naturality determines a;, in terms of
a,. It transports o, along f:

ay = (Gf) o ag= (Ff)™!

Fo,  oa , Ga

Fel i) |6F

Fb <y Gb

If there is more than one invertible morphism between two objects, all
these transports have to agree. In general, though, morphisms are not
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invertible; but you can see that the existence of natural transforma-
tions between two functors is far from guaranteed. So the scarcity or
the abundance of functors that are related by natural transformations
may tell you a lot about the structure of categories between which they
operate. We’ll see some examples of that when we talk about limits and
the Yoneda lemma.

Looking at a natural transformation component-wise, one may say
that it maps objects to morphisms. Because of the naturality condition,
one may also say that it maps morphisms to commuting squares — there
is one commuting naturality square in D for every morphism in C.

a, o Do ps
fl =D Ffl Gf
L* .—f-o?b—-—"

This property of natural transformations comes in very handy in a lot
of categorical constructions, which often include commuting diagrams.
With a judicious choice of functors, a lot of these commutativity condi-
tions may be transformed into naturality conditions. We’ll see examples
of that when we get to limits, colimits, and adjunctions.

Finally, natural transformations may be used to define isomor-
phisms of functors. Saying that two functors are naturally isomorphic
is almost like saying they are the same. Natural isomorphism is defined
as a natural transformation whose components are all isomorphisms
(invertible morphisms).
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Polymorphic Functions

We talked about the role of functors (or, more specifically, endofunc-
tors) in programming. They correspond to type constructors that map
types to types. They also map functions to functions, and this mapping
is implemented by a higher order function fmap (or transform, then,
and the like in C++).

To construct a natural transformation we start with an object, here
a type, a. One functor, F, maps it to the type Fa. Another functor, G,
maps it to Ga. The component of a natural transformation alpha at a is
a function from Fa to Ga. In pseudo-Haskell:

alpha, :: Fa->G a

A natural transformation is a polymorphic function that is defined for
all types a:

alpha :: forall a . Fa ->G a
The forall ais optional in Haskell (and in fact requires turning on the

language extension ExplicitForAll). Normally, you would write it like
this:

alpha :: F a -> G a
Keep in mind that it’s really a family of functions parameterized by a.

This is another example of the terseness of the Haskell syntax. A similar
construct in C++ would be slightly more verbose:

template<class A> G<A> alpha(F<A>);
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There is a more profound difference between Haskell’s polymorphic
functions and C++ generic functions, and it’s reflected in the way these
functions are implemented and type-checked. In Haskell, a polymor-
phic function must be defined uniformly for all types. One formula must
work across all types. This is called parametric polymorphism.

C++, on the other hand, supports by default ad hoc polymorphism,
which means that a template doesn’t have to be well-defined for all
types. Whether a template will work for a given type is decided at in-
stantiation time, where a concrete type is substituted for the type pa-
rameter. Type checking is deferred, which unfortunately often leads to
incomprehensible error messages.

In C++, there is also a mechanism for function overloading and tem-
plate specialization, which allows different definitions of the same func-
tion for different types. In Haskell this functionality is provided by type
classes and type families.

Haskell’s parametric polymorphism has an unexpected conse-
quence: any polymorphic function of the type:

alpha :: F a > G a

where F and G are functors, automatically satisfies the naturality condi-
tion. Here it is in categorical notation (f is a function f :: a — b):

Gfoag=ap°Ff

In Haskell, the action of a functor G on a morphism f is implemented
using fmap. I'll first write it in pseudo-Haskell, with explicit type anno-
tations:
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fmapg f . alpha, = alpha, . fmapg f

Because of type inference, these annotations are not necessary, and the
following equation holds:

fmap f . alpha = alpha . fmap f

This is still not real Haskell — function equality is not expressible in code
— but it’s an identity that can be used by the programmer in equational
reasoning; or by the compiler, to implement optimizations.

The reason why the naturality condition is automatic in Haskell has
to do with “theorems for free.” Parametric polymorphism, which is used
to define natural transformations in Haskell, imposes very strong limi-
tations on the implementation — one formula for all types. These limi-
tations translate into equational theorems about such functions. In the
case of functions that transform functors, free theorems are the natu-
rality conditions.'

One way of thinking about functors in Haskell that I mentioned
earlier is to consider them generalized containers. We can continue this
analogy and consider natural transformations to be recipes for repack-
aging the contents of one container into another container. We are not
touching the items themselves: we don’t modify them, and we don’t cre-
ate new ones. We are just copying (some of) them, sometimes multiple
times, into a new container.

The naturality condition becomes the statement that it doesn’t mat-
ter whether we modify the items first, through the application of fmap,
and repackage later; or repackage first, and then modify the items in

You may read more about free theorems in my blog “Parametricity: Money for
Nothing and Theorems for Free”
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the new container, with its own implementation of fmap. These two ac-
tions, repackaging and fmapping, are orthogonal. “One moves the eggs,
the other boils them.”

Let’s see a few examples of natural transformations in Haskell. The
first is between the list functor, and the Maybe functor. It returns the
head of the list, but only if the list is non-empty:

safeHead :: [a] -> Maybe a
safeHead [] = Nothing
safeHead (x:xs) = Just x

It’s a function polymorphic in a. It works for any type a, with no limita-
tions, so it is an example of parametric polymorphism. Therefore it is a
natural transformation between the two functors. But just to convince
ourselves, let’s verify the naturality condition.

fmap f . safeHead = safeHead . fmap f

We have two cases to consider; an empty list:

fmap f (safeHead [1])

fmap f Nothing = Nothing

safeHead (fmap f []) = safeHead [] = Nothing

and a non-empty list:

fmap f (safeHead (x:xs)) = fmap f (Just x) = Just (f x)
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safeHead (fmap f (x:xs)) = safeHead (f x : fmap f xs) = Just (f x)

I used the implementation of fmap for lists:

fmap f [1 = []
fmap f (x:xs) = f x : fmap f xs

and for Maybe:

fmap f Nothing = Nothing
fmap f (Just x) = Just (f x)

An interesting case is when one of the functors is the trivial Const func-
tor. A natural transformation from or to a Const functor looks just like a
function that’s either polymorphic in its return type or in its argument
type.

For instance, length can be thought of as a natural transformation
from the list functor to the Const Int functor:

length :: [a] -> Const Int a
length [] = Const 0
length (x:xs) = Const (1 + unConst (length xs))

Here, unConst is used to peel off the Const constructor:

unConst :: Const c a -> ¢
unConst (Const x) = x

Of course, in practice length is defined as:
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length :: [a] -> Int

which effectively hides the fact that it’s a natural transformation.

Finding a parametrically polymorphic function from a Const func-
tor is a little harder, since it would require the creation of a value from
nothing. The best we can do is:

scam :: Const Int a -> Maybe a
scam (Const x) = Nothing

Another common functor that we’ve seen already, and which will play
an important role in the Yoneda lemma, is the Reader functor. I will
rewrite its definition as a newtype:

newtype Reader e a = Reader (e -> a)

It is parameterized by two types, but is (covariantly) functorial only in
the second one:

instance Functor (Reader e) where
fmap f (Reader g) = Reader (\x -> f (g x))

For every type e, you can define a family of natural transformations
from Reader e to any other functor f. We'll see later that the mem-
bers of this family are always in one to one correspondence with the
elements of f e (the Yoneda lemma).

For instance, consider the somewhat trivial unit type () with one
element (). The functor Reader () takes any type a and maps it into a
function type () -> a. These are just all the functions that pick a single
element from the set a. There are as many of these as there are elements
in a. Now let’s consider natural transformations from this functor to the
Maybe functor:
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alpha :: Reader () a -> Maybe a

There are only two of these, dumb and obvious:

dumb (Reader _) = Nothing

and

obvious (Reader g) = Just (g ())

(The only thing you can do with g is to apply it to the unit value ().)

And, indeed, as predicted by the Yoneda lemma, these correspond
to the two elements of the Maybe () type, which are Nothing and Just
(). We’ll come back to the Yoneda lemma later — this was just a little
teaser.

Beyond Naturality

A parametrically polymorphic function between two functors (includ-
ing the edge case of the Const functor) is always a natural transforma-
tion. Since all standard algebraic data types are functors, any polymor-
phic function between such types is a natural transformation.

We also have function types at our disposal, and those are functorial
in their return type. We can use them to build functors (like the Reader
functor) and define natural transformations that are higher-order func-
tions.

However, function types are not covariant in the argument type.
They are contravariant. Of course contravariant functors are equivalent
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to covariant functors from the opposite category. Polymorphic func-
tions between two contravariant functors are still natural transforma-
tions in the categorical sense, except that they work on functors from
the opposite category to Haskell types.

You might remember the example of a contravariant functor we’ve
looked at before:

newtype Op r a = Op (a => r)

This functor is contravariant in a:

instance Contravariant (Op r) where
contramap f (Op g) = Op (g . f)

We can write a polymorphic function from, say, Op Bool to Op String:

predToStr (Op f) = Op (\x => if f x then "T" else "F")

But since the two functors are not covariant, this is not a natural trans-
formation in Hask. However, because they are both contravariant, they
satisfy the “opposite” naturality condition:

contramap f . predToStr = predToStr . contramap f

Notice that the function f must go in the opposite direction than what
you’d use with fmap, because of the signature of contramap:

contramap :: (b -> a) -> (Op Bool a -> Op Bool b)

Are there any type constructors that are not functors, whether covariant
or contravariant? Here’s one example:
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a -> a

This is not a functor because the same type a is used both in the negative
(contravariant) and positive (covariant) position. You can’t implement
fmap or contramap for this type. Therefore a function of the signature:

(a->a) >f a

where f is an arbitrary functor, cannot be a natural transformation. In-
terestingly, there is a generalization of natural transformations, called
dinatural transformations, that deals with such cases. We’ll get to them
when we discuss ends.

Functor Category

Now that we have mappings between functors — natural transforma-
tions — it’s only natural to ask the question whether functors form a
category. And indeed they do! There is one category of functors for
each pair of categories, C and D. Objects in this category are functors
from C to D, and morphisms are natural transformations between those
functors.

We have to define composition of two natural transformations, but
that’s quite easy. The components of natural transformations are mor-
phisms, and we know how to compose morphisms.

Indeed, let’s take a natural transformation « from functor F to G. Its
component at object a is some morphism:

a, : Fa— Ga
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We’d like to compose a with f, which is a natural transformation from
functor G to H. The component of § at a is a morphism:

B, :: Ga — Ha

These morphisms are composable and their composition is another mor-
phism:

Biea, :: Fa— Ha
We will use this morphism as the component of the natural transfor-

mation f - « — the composition of two natural transformations f after
a:

One (long) look at a diagram convinces us that the result of this com-
position is indeed a natural transformation from F to H:

Hf o (p-a)a=(f-a)y°Ff
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Composition of natural transformations is associative, because their
components, which are regular morphisms, are associative with respect
to their composition.

Finally, for each functor F there is an identity natural transformation
1r whose components are the identity morphisms:

idg, :: Fa — Fa

So, indeed, functors form a category.

A word about notation. Following Saunders Mac Lane I use the dot
for the kind of natural transformation composition I have just described.
The problem is that there are two ways of composing natural transfor-
mations. This one is called the vertical composition, because the func-
tors are usually stacked up vertically in the diagrams that describe it.
Vertical composition is important in defining the functor category. I'll
explain horizontal composition shortly.
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The functor category between categories C and D is written as
Fun(C,D), or [C,D], or sometimes as D€. This last notation suggests
that a functor category itself might be considered a function object (an
exponential) in some other category. Is this indeed the case?

Let’s have a look at the hierarchy of abstractions that we’ve been
building so far. We started with a category, which is a collection of ob-
jects and morphisms. Categories themselves (or, strictly speaking small
categories, whose objects form sets) are themselves objects in a higher-
level category Cat. Morphisms in that category are functors. A Hom-set
in Cat is a set of functors. For instance Cat(C, D) is a set of functors be-
tween two categories C and D.

Ced

A functor category |C,D] is also a set of functors between two cate-
gories (plus natural transformations as morphisms). Its objects are the
same as the members of Cat(C, D). Moreover, a functor category, being
a category, must itself be an object of Cat (it so happens that the func-
tor category between two small categories is itself small). We have a
relationship between a Hom-set in a category and an object in the same
category. The situation is exactly like the exponential object that we’'ve
seen in the last section. Let’s see how we can construct the latter in Cat.

As you may remember, in order to construct an exponential, we
need to first define a product. In Cat, this turns out to be relatively easy,
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because small categories are sets of objects, and we know how to define
Cartesian products of sets. So an object in a product category C x D is
just a pair of objects, (¢, d), one from C and one from D. Similarly, a mor-
phism between two such pairs, (¢,d) and (¢’,d’), is a pair of morphisms,
(f,g), where f :: ¢ > ¢’ and g :: d — d’. These pairs of morphisms
compose component-wise, and there is always an identity pair that is
just a pair of identity morphisms. To make the long story short, Cat is
a full-blown Cartesian closed category in which there is an exponential
object D€ for any pair of categories. And by “object” in Cat I mean a
category, so D is a category, which we can identify with the functor
category between C and D.

2-Categories

With that out of the way, let’s have a closer look at Cat. By definition,
any Hom-set in Cat is a set of functors. But, as we have seen, functors
between two objects have a richer structure than just a set. They form
a category, with natural transformations acting as morphisms. Since
functors are considered morphisms in Cat, natural transformations are
morphisms between morphisms.

This richer structure is an example of a 2-category, a generalization
of a category where, besides objects and morphisms (which might be
called 1-morphisms in this context), there are also 2-morphisms, which
are morphisms between morphisms.

In the case of Cat seen as a 2-category we have:

« Objects: (Small) categories
 1-morphisms: Functors between categories
 2-morphisms: Natural transformations between functors.
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Instead of a Hom-set between two categories C and D, we have a Hom-
category — the functor category D€. We have regular functor compo-
sition: a functor F from D€ composes with a functor G from EP to give
G F from EC. But we also have composition inside each Hom-category
— vertical composition of natural transformations, or 2-morphisms, be-
tween functors.

With two kinds of composition in a 2-category, the question arises:
How do they interact with each other?

Let’s pick two functors, or 1-morphisms, in Cat:

F:C—-D
G:D—>E
and their composition:
GoF:C—E

Suppose we have two natural transformations, @ and f, that act, respec-
tively, on functors F and G:

a:F—>F
B::G—->G

172



Notice that we cannot apply vertical composition to this pair, because
the target of « is different from the source of §. In fact they are members
of two different functor categories: D¢ and EP. We can, however, apply
composition to the functors F/ and G’, because the target of F’ is the
source of G’ — it’s the category D. What’s the relation between the
functors G’ « F and G » F?

Having «a and f at our disposal, can we define a natural transforma-
tion from G  F to G’ = F’? Let me sketch the construction.

Fa. e G(Fa.)
E A l
“oG [ SEA] P! G
Geg (ﬁ“‘)a

-

~~J51- =0 G(Fa)
Fa\.k}@ .

G'(F'a

~

As usual, we start with an object a in C. Its image splits into two ob-
jects in D: Fa and F’a. There is also a morphism, a component of «,
connecting these two objects:

a, :: Fa—> F'a
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When going from D to E, these two objects split further into four ob-
jects: G(Fa), G’(Fa), G(F’a), G’(F’a). We also have four morphisms
forming a square. Two of these morphisms are the components of the
natural transformation f:

Bra : G(Fa) — G (Fa)
Brra t: G(F'a) » G (F'a)

The other two are the images of «, under the two functors (functors
map morphisms):

Ga, :: G(Fa) - G(F'a)
G'a, :: G'(Fa) > G'(F’a)

That’s a lot of morphisms. Our goal is to find a morphism that goes from
G(Fa) to G’(F’a), a candidate for the component of a natural transfor-
mation connecting the two functors G- F and G’ » F’. In fact there’s not
one but two paths we can take from G(Fa) to G’ (F’a):

G'ay ° frg
ﬁF’a ° Gay

Luckily for us, they are equal, because the square we have formed turns
out to be the naturality square for S.

We have just defined a component of a natural transformation from
G o F to G’ o F’. The proof of naturality for this transformation is pretty
straightforward, provided you have enough patience.

We call this natural transformation the horizontal composition of
and S

foa::GeF -G oF
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Again, following Mac Lane I use the small circle for horizontal compo-
sition, although you may also encounter star in its place.

Here’s a categorical rule of thumb: Every time you have composi-
tion, you should look for a category. We have vertical composition of
natural transformations, and it’s part of the functor category. But what
about the horizontal composition? What category does that live in?

The way to figure this out is to look at Cat sideways. Look at natural
transformations not as arrows between functors but as arrows between
categories. A natural transformation sits between two categories, the
ones that are connected by the functors it transforms. We can think of
it as connecting these two categories.

Let’s focus on two objects of Cat — categories C and D. There is a set of
natural transformations that go between functors that connect C to D.
These natural transformations are our new arrows from C to D. By the
same token, there are natural transformations going between functors
that connect D to E, which we can treat as new arrows going from D to
E. Horizontal composition is the composition of these arrows.

We also have an identity arrow going from C to C. It’s the identity
natural transformation that maps the identity functor on C to itself.
Notice that the identity for horizontal composition is also the identity
for vertical composition, but not vice versa.

Finally, the two compositions satisfy the interchange law:

(B -a’) o (B-a)= (B >p) (¢ 2 )
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I will quote Saunders Mac Lane here: The reader may enjoy writing
down the evident diagrams needed to prove this fact.

There is one more piece of notation that might come in handy in the
future. In this new sideways interpretation of Cat there are two ways of
getting from object to object: using a functor or using a natural trans-
formation. We can, however, re-interpret the functor arrow as a special
kind of natural transformation: the identity natural transformation act-
ing on this functor. So you’ll often see this notation:

Foux

where F is a functor from D to E, and « is a natural transformation
between two functors going from C to D. Since you can’t compose a
functor with a natural transformation, this is interpreted as a horizontal
composition of the identity natural transformation 1 after a.
Similarly:
aoF

is a horizontal composition of « after 1f.

Conclusion

This concludes the first part of the book. We’ve learned the basic vo-
cabulary of category theory. You may think of objects and categories as
nouns; and morphisms, functors, and natural transformations as verbs.
Morphisms connect objects, functors connect categories, natural trans-
formations connect functors.

But we’ve also seen that, what appears as an action at one level of
abstraction, becomes an object at the next level. A set of morphisms
turns into a function object. As an object, it can be a source or a target
of another morphism. That’s the idea behind higher order functions.
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A functor maps objects to objects, so we can use it as a type con-
structor, or a parametric type. A functor also maps morphisms, so it is
a higher order function — fmap. There are some simple functors, like
Const, product, and coproduct, that can be used to generate a large va-
riety of algebraic data types. Function types are also functorial, both
covariant and contravariant, and can be used to extend algebraic data
types.

Functors may be looked upon as objects in the functor category.
As such, they become sources and targets of morphisms: natural trans-
formations. A natural transformation is a special type of polymorphic
function.

Challenges

1. Define a natural transformation from the Maybe functor to the list
functor. Prove the naturality condition for it.

2. Define at least two different natural transformations between
Reader () and the list functor. How many different lists of ()
are there?

3. Continue the previous exercise with Reader Bool and Maybe.

4. Show that horizontal composition of natural transformation sat-
isfies the naturality condition (hint: use components). It’s a good
exercise in diagram chasing.

5. Write a short essay about how you may enjoy writing down the
evident diagrams needed to prove the interchange law.

6. Create a few test cases for the opposite naturality condition of
transformations between different Op functors. Here’s one choice:
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op :: Op Bool Int
op =0p (\x => x > 0)

and

f :: String -> Int
f x = read x
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Part Two
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Declarative Programming

N THE FIRST PART of the book I argued that both category theory and
programming are about composability. In programming, you keep de-
composing a problem until you reach the level of detail that you can
deal with, solve each subproblem in turn, and re-compose the solutions
bottom-up. There are, roughly speaking, two ways of doing it: by telling
the computer what to do, or by telling it how to do it. One is called
declarative and the other imperative.
You can see this even at the most basic level. Composition itself may
be defined declaratively; as in, h is a composite of g after f:

h=g.f

or imperatively; as in, call f first, remember the result of that call, then
call g with the result:
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ingy

The imperative version of a program is usually described as a sequence
of actions ordered in time. In particular, the call to g cannot happen be-
fore the execution of f completes. At least, that’s the conceptual picture
— in a lazy language, with call-by-need argument passing, the actual
execution may proceed differently.

In fact, depending on the cleverness of the compiler, there may be
little or no difference between how declarative and imperative code is
executed. But the two methodologies differ, sometimes drastically, in
the way we approach problem solving and in the maintainability and
testability of the resulting code.

The main question is: when faced with a problem, do we always have
the choice between a declarative and imperative approaches to solving
it? And, if there is a declarative solution, can it always be translated into
computer code? The answer to this question is far from obvious and, if
we could find it, we would probably revolutionize our understanding of
the universe.

Let me elaborate. There is a similar duality in physics, which either
points at some deep underlying principle, or tells us something about
how our minds work. Richard Feynman mentions this duality as an in-
spiration in his own work on quantum electrodynamics.

There are two forms of expressing most laws of physics. One uses
local, or infinitesimal, considerations. We look at the state of a system
around a small neighborhood, and predict how it will evolve within the
next instant of time. This is usually expressed using differential equa-
tions that have to be integrated, or summed up, over a period of time.
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Notice how this approach resembles imperative thinking: we reach
the final solution by following a sequence of small steps, each depending
on the result of the previous one. In fact, computer simulations of physi-
cal systems are routinely implemented by turning differential equations
into difference equations and iterating them. This is how spaceships are
animated in the asteroids game. At each time step, the position of a
spaceship is changed by adding a small increment, which is calculated
by multiplying its velocity by the time delta. The velocity, in turn, is
changed by a small increment proportional to acceleration, which is
given by force divided by mass.

These are the direct encod-
ings of the differential equations
corresponding to Newton’s laws

of motion:
F dv
-
dx
VS

Similar methods may be ap-
plied to more complex problems,
like the propagation of electro-
magnetic fields using Maxwell’s
equations, or even the behavior of quarks and gluons inside a proton
using lattice Qcp (quantum chromodynamics).

This local thinking combined with discretization of space and time
that is encouraged by the use of digital computers found its extreme ex-
pression in the heroic attempt by Stephen Wolfram to reduce the com-
plexity of the whole universe to a system of cellular automata.
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The other approach is global. We look at the initial and the final
state of the system, and calculate a trajectory that connects them by
minimizing a certain functional. The simplest example is the Fermat’s
principle of least time. It states that light rays propagate along paths
that minimize their flight time. In particular, in the absence of reflect-
ing or refracting objects, a light ray from point A to point B will take
the shortest path, which is a straight line. But light propagates slower
in dense (transparent) materials, like water or glass. So if you pick the
starting point in the air, and the ending point under water, it’s more ad-
vantageous for light to travel longer in the air and then take a shortcut
through water. The path of minimum time makes the ray refract at the
boundary of air and water, resulting in Snell’s law of refraction:

sin(6;) W

sin (02 ) Vo

where v; is the speed of light in the air and v, is the speed of light in
the water.

All of classical mechanics can be derived from the principle of least ac-
tion. The action can be calculated for any trajectory by integrating the
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Lagrangian, which is the difference between kinetic and potential en-
ergy (notice: it’s the difference, not the sum — the sum would be the
total energy). When you fire a mortar to hit a given target, the projec-
tile will first go up, where the potential energy due to gravity is higher,
and spend some time there racking up negative contribution to the ac-
tion. It will also slow down at the top of the parabola, to minimize ki-
netic energy. Then it will speed up to go quickly through the area of
low potential energy.

-
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Feynman’s greatest contribution was to realize that the principle of least
action can be generalized to quantum mechanics. There, again, the prob-
lem is formulated in terms of initial state and final state. The Feynman
path integral between those states is used to calculate the probability of
transition.

Foteora

Pasd

The point is that there is a curious unexplained duality in the way we
can describe the laws of physics. We can use the local picture, in which
things happen sequentially and in small increments. Or we can use the
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global picture, where we declare the initial and final conditions, and
everything in between just follows.

The global approach can be also used in programming, for instance
when implementing ray tracing. We declare the position of the eye and
the positions of light sources, and figure out the paths that the light
rays may take to connect them. We don’t explicitly minimize the time
of flight for each ray, but we do use Snell’s law and the geometry of
reflection to the same effect.

The biggest difference between the local and the global approach is
in their treatment of space and, more importantly, time. The local ap-
proach embraces the immediate gratification of here and now, whereas
the global approach takes a long-term static view, as if the future had
been preordained, and we were only analyzing the properties of some
eternal universe.

Nowhere is it better illustrated than in the Functional Reactive Pro-
gramming (FRP) approach to user interaction. Instead of writing sepa-
rate handlers for every possible user action, all having access to some
shared mutable state, FRP treats external events as an infinite list, and
applies a series of transformations to it. Conceptually, the list of all our
future actions is there, available as the input data to our program. From
a program’s perspective there’s no difference between the list of digits
of 7, a list of pseudo-random numbers, or a list of mouse positions com-
ing through computer hardware. In each case, if you want to get the nh
item, you have to first go through the first n — 1 items. When applied to
temporal events, we call this property causality.

So what does it have to do with category theory? I will argue that
category theory encourages a global approach and therefore supports
declarative programming. First of all, unlike calculus, it has no built-in
notion of distance, or neighborhood, or time. All we have is abstract ob-
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jects and abstract connections between them. If you can get from A to B
through a series of steps, you can also get there in one leap. Moreover,
the major tool of category theory is the universal construction, which is
the epitome of a global approach. We’ve seen it in action, for instance,
in the definition of the categorical product. It was done by specifying its
properties — a very declarative approach. It’s an object equipped with
two projections, and it’s the best such object — it optimizes a certain
property: the property of factorizing the projections of other such ob-
jects.

Compare this with Fermat’s principle of minimum time, or the principle
of least action.

Conversely, contrast this with the traditional definition of a Carte-
sian product, which is much more imperative. You describe how to cre-
ate an element of the product by picking one element from one set and
another element from another set. It’s a recipe for creating a pair. And
there’s another for disassembling a pair.

In almost every programming language, including functional lan-
guages like Haskell, product types, coproduct types, and function types
are built in, rather than being defined by universal constructions; al-
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though there have been attempts at creating categorical programming
languages (see, e.g., Tatsuya Hagino’s thesis®).

Whether used directly or not, categorical definitions justify pre-
existing programming constructs, and give rise to new ones. Most
importantly, category theory provides a meta-language for reasoning
about computer programs at a declarative level. It also encourages rea-
soning about problem specification before it is cast into code.

1http://web.sfc.keio.ac.jp/~hagino/thesis.pdf
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Limits and Colimits

T SEEMS LIKE IN CATEGORY THEORY everything is related to every-

thing and everything can be viewed from many angles. Take for in-
stance the universal construction of the product. Now that we know
more about functors and natural transformations, can we simplify and,
possibly, generalize it? Let us try.

The construction of a product starts with the selection of two objects a
and b, whose product we want to construct. But what does it mean to
select objects? Can we rephrase this action in more categorical terms?
Two objects form a pattern — a very simple pattern. We can abstract
this pattern into a category — a very simple category, but a category
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nevertheless. It’s a category that we’ll call 2. It contains just two objects,
1 and 2, and no morphisms other than the two obligatory identities. Now
we can rephrase the selection of two objects in C as the act of defining a
functor D from the category 2 to C. A functor maps objects to objects, so
its image is just two objects (or it could be one, if the functor collapses
objects, which is fine too). It also maps morphisms — in this case it
simply maps identity morphisms to identity morphisms.

What’s great about this approach is that it builds on categorical
notions, eschewing the imprecise descriptions like “selecting objects”,
taken straight from the hunter-gatherer lexicon of our ancestors. And,
incidentally, it is also easily generalized, because nothing can stop us
from using categories more complex than 2 to define our patterns.

But let’s continue. The next step in the definition of a product is the
selection of the candidate object c. Here again, we could rephrase the
selection in terms of a functor from a singleton category. And indeed,
if we were using Kan extensions, that would be the right thing to do.
But since we are not ready for Kan extensions yet, there is another trick
we can use: a constant functor A from the same category 2 to C. The
selection of ¢ in C can be done with A.. Remember, A, maps all objects
into ¢ and all morphisms into id,.
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Now we have two functors, A, and D going between 2 and C so it’s
only natural to ask about natural transformations between them. Since
there are only two objects in 2, a natural transformation will have two
components. Object 1 in 2 is mapped to ¢ by A, and to a by D. So the
component of a natural transformation between A, and D at 1 is a mor-
phism from ¢ to a. We can call it p. Similarly, the second component
is a morphism g from c to b — the image of the object 2 in 2 under D.
But these are exactly like the two projections we used in our original
definition of the product. So instead of talking about selecting objects
and projections, we can just talk about picking functors and natural
transformations. It so happens that in this simple case the naturality
condition for our transformation is trivially satisfied, because there are
no morphisms (other than the identities) in 2.

A generalization of this construction to categories other than 2 — ones
that, for instance, contain non-trivial morphisms — will impose nat-
urality conditions on the transformation between A. and D. We call
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such a transformation a cone, because the image of A is the apex of a
cone/pyramid whose sides are formed by the components of the natural
transformation. The image of D forms the base of the cone.

In general, to build a cone, we start with a category I that defines
the pattern. It’s a small, often finite category. We pick a functor D from
I to C and call it (or its image) a diagram. We pick some c in C as the
apex of our cone. We use it to define the constant functor A, from I to
C. A natural transformation from A, to D is then our cone. For a finite
Iit’s just a bunch of morphisms connecting c to the diagram: the image
of I under D.

Naturality requires that all triangles (the walls of the pyramid) in this
diagram commute. Indeed, take any morphism f in I. The functor D
maps it to a morphism D f in C, a morphism that forms the base of some
triangle. The constant functor A, maps f to the identity morphism on
c. A squishes the two ends of the morphism into one object, and the
naturality square becomes a commuting triangle. The two arms of this
triangle are the components of the natural transformation.
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So that’s one cone. What we are interested in is the universal cone —
just like we picked a universal object for our definition of a product.

There are many ways to go about it. For instance, we may define a
category of cones based on a given functor D. Objects in that category
are cones. Not every object ¢ in C can be an apex of a cone, though,
because there may be no natural transformation between A, and D.

To make it a category, we also have to define morphisms between
cones. These would be fully determined by morphisms between their
apexes. But not just any morphism will do. Remember that, in our con-
struction of the product, we imposed the condition that the morphisms
between candidate objects (the apexes) must be common factors for the
projections. For instance:

p' =p . m
q' =g
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This condition translates, in the general case, to the condition that the
triangles whose one side is the factorizing morphism all commute.

Y
7 7 \\Q
e \]
N

The commuting triangle connecting two cones, with the factorizing morphism h (here, the lower
cone is the universal one, with LimD as its apex)

We'll take those factorizing morphisms as the morphisms in our cate-
gory of cones. It’s easy to check that those morphisms indeed compose,
and that the identity morphism is a factorizing morphism as well. Cones
therefore form a category.

Now we can define the universal cone as the terminal object in the
category of cones. The definition of the terminal object states that there
is a unique morphism from any other object to that object. In our case it
means that there is a unique factorizing morphism from the apex of any
other cone to the apex of the universal cone. We call this universal cone
the limit of the diagram D, LimD (in the literature, you’ll often see a left
arrow pointing towards I under the Lim sign). Often, as a shorthand,
we call the apex of this cone the limit (or the limit object).

The intuition is that the limit embodies the properties of the whole
diagram in a single object. For instance, the limit of our two-object di-
agram is the product of two objects. The product (together with the
two projections) contains the information about both objects. And be-
ing universal means that it has no extraneous junk.
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Limit as a Natural Isomorphism

There is still something unsatisfying about this definition of a limit. I
mean, it’s workable, but we still have this commutativity condition for
the triangles that are linking any two cones. It would be so much more
elegant if we could replace it with some naturality condition. But how?

We are no longer dealing with one cone but with a whole collection
(in fact, a category) of cones. If the limit exists (and — let’s make it
clear — there’s no guarantee of that), one of those cones is the universal
cone. For every other cone we have a unique factorizing morphism that
maps its apex, let’s call it ¢, to the apex of the universal cone, which we
named LimD. (In fact, I can skip the word “other”, because the identity
morphism maps the universal cone to itself and it trivially factorizes
through itself.) Let me repeat the important part: given any cone, there
is a unique morphism of a special kind. We have a mapping of cones to
special morphisms, and it’s a one-to-one mapping.

This special morphism is a member of the hom-set C(c, LimD). The
other members of this hom-set are less fortunate, in the sense that they
don’t factorize the mapping of cones. What we want is to be able to
pick, for each ¢, one morphism from the set C(c, LimD) — a morphism
that satisfies the particular commutativity condition. Does that sound
like defining a natural transformation? It most certainly does!

But what are the functors that are related by this transformation?

One functor is the mapping of ¢ to the set C(c, LimD). It’s a func-
tor from C to Set — it maps objects to sets. In fact it’s a contravariant
functor. Here’s how we define its action on morphisms: Let’s take a
morphism f from ¢’ to c:

fucd—>c
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Our functor maps ¢’ to the set C(¢’, LimD). To define the action of this
functor on f (in other words, to lift f), we have to define the corre-
sponding mapping between C(c¢, LimD) and C(¢’,LimD). So let’s pick
one element u of C(c¢, LimD) and see if we can map it to some element
of C(¢’,LimD). An element of a hom-set is a morphism, so we have:

u :: ¢ — LimD
We can precompose u with f to get:
u.f :: ¢’ > LimD

And that’s an element of C(¢’,LimD)— so indeed, we have found a
mapping of morphisms:

contramap :: (c¢' -> c) -> (¢ -> LimD) -> (c' -> LimD)
contramap f u=u . f

Notice the inversion in the order of ¢ and ¢’ characteristic of a con-
travariant functor.

To define a natural transformation, we need another functor that’s also a
mapping from C to Set. But this time we’ll consider a set of cones. Cones
are just natural transformations, so we are looking at the set of natural
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transformations Nat(A., D). The mapping from c to this particular set of
natural transformations is a (contravariant) functor. How can we show
that? Again, let’s define its action on a morphism:

f::c’—)c

The lifting of f should be a mapping of natural transformations between
two functors that go from I to C:

Nat(A.,D) - Nat(Ay, D)

How do we map natural transformations? Every natural transformation
is a selection of morphisms — its components — one morphism per el-
ement of I. A component of some « (a member of Nat(A., D)) at a (an
object in I) is a morphism:

a, : Aca — Da
or, using the definition of the constant functor A,
a, ::c— Da

Given f and @, we have to construct a f, a member of Nat(A., D). Its
component at a should be a morphism:

Py i ¢’ = Da

We can easily get the latter (f,) from the former (o,) by precomposing
it with f:

Ba =g f
It’s relatively easy to show that those components indeed add up to a
natural transformation.
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Given our morphism f, we have thus built a mapping between two natu-
ral transformations, component-wise. This mapping defines contramap

-
“

C

for the functor:
¢ - Nat(A., D)

What I have just done is to show you that we have two (contravariant)
functors from C to Set. T haven’t made any assumptions — these functors
always exist.

Incidentally, the first of these functors plays an important role in
category theory, and we’ll see it again when we talk about Yoneda’s
lemma. There is a name for contravariant functors from any category
C to Set: they are called “presheaves”. This one is called a representable
presheaf. The second functor is also a presheaf.

Now that we have two functors, we can talk about natural transfor-
mations between them. So without further ado, here’s the conclusion:
A functor D from I to C has a limit LimD if and only if there is a natural
isomorphism between the two functors I have just defined:

C(c¢,LimD) = Nat(A., D)

Let me remind you what a natural isomorphism is. It’s a natural trans-
formation whose every component is an isomorphism, that is to say an
invertible morphism.
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I’'m not going to go through the proof of this statement. The proce-
dure is pretty straightforward if not tedious. When dealing with natu-
ral transformations, you usually focus on components, which are mor-
phisms. In this case, since the target of both functors is Set, the com-
ponents of the natural isomorphism will be functions. These are higher
order functions, because they go from the hom-set to the set of natu-
ral transformations. Again, you can analyze a function by considering
what it does to its argument: here the argument will be a morphism — a
member of C(c, LimD) — and the result will be a natural transformation
— a member of Nat(A., D), or what we have called a cone. This natural
transformation, in turn, has its own components, which are morphisms.
So it’s morphisms all the way down, and if you can keep track of them,
you can prove the statement.

The most important result is that the naturality condition for this
isomorphism is exactly the commutativity condition for the mapping
of cones.

As a preview of coming attractions, let me mention that the set
Nat(A., D) can be thought of as a hom-set in the functor category; so
our natural isomorphism relates two hom-sets, which points at an even
more general relationship called an adjunction.

Examples of Limits

We’ve seen that the categorical product is a limit of a diagram generated
by a simple category we called 2.

There is an even simpler example of a limit: the terminal object. The
first impulse would be to think of a singleton category as leading to
a terminal object, but the truth is even starker than that: the terminal
object is a limit generated by an empty category. A functor from an
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empty category selects no object, so a cone shrinks to just the apex. The
universal cone is the lone apex that has a unique morphism coming to
it from any other apex. You will recognize this as the definition of the
terminal object.

The next interesting limit is called the equalizer. It’s a limit gen-
erated by a two-element category with two parallel morphisms going
between them (and, as always, the identity morphisms). This category
selects a diagram in C consisting of two objects, a and b, and two mor-

phisms:
f:wa->b
g::a->b

To build a cone over this diagram, we have to add the apex, ¢ and two
projections:

p::c->a
q::c->b

b

We have two triangles that must commute:
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This tells us that g is uniquely determined by one of these equations,
say,q = f . p,and we can omit it from the picture. So we are left with
just one condition:

f.p=g.p

The way to think about it is that, if we restrict our attention to Set, the
image of the function p selects a subset of a. When restricted to this
subset, the functions f and g are equal.

For instance, take a to be the two-dimensional plane parameterized
by coordinates x and y. Take b to be the real line, and take:

f(x,y)=2%y+x
g (X, y) =y - x

The equalizer for these two functions is the set of real numbers (the
apex, c¢) and the function:

pt=(t, (-2) * 1)
Notice that (p t) defines a straight line in the two-dimensional plane.
Along this line, the two functions are equal.

Of course, there are other sets ¢’ and functions p’ that may lead to
the equality:

but they all uniquely factor out through p. For instance, we can take the
singleton set () as ¢’ and the function:
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p'O) = (2, 0)

It’s a good cone, because f(0,0) = g(0,0). Butit’s not universal, because
of the unique factorization through h:

with

P
Ao
— & b,

a-b\___j
9

An equalizer can thus be used to solve equations of the type f x = g x.
But it’s much more general, because it’s defined in terms of objects and
morphisms rather than algebraically.

An even more general idea of solving an equation is embodied in
another limit — the pullback. Here, we still have two morphisms that
we want to equate, but this time their domains are different. We start
with a three-object category of the shape: 1 — 2 <« 3. The diagram
corresponding to this category consists of three objects, a, b, and ¢, and
two morphisms:
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f::a->b
g::c->b

This diagram is often called a cospan.
A cone built on top of this diagram consists of the apex, d, and three

morphisms:
p::d->a
q::d->c
r::d->5b

A
ao’/P/ WN{C
;\a. A/‘ﬂ

)
b

Commutativity conditions tell us that r is completely determined by the
other morphisms, and can be omitted from the picture. So we are only
left with the following condition:

g.q="f.p

A pullback is a universal cone of this shape.
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Again, if you narrow your focus down to sets, you can think of the object
d as consisting of pairs of elements from a and ¢ for which f acting on
the first component is equal to g acting on the second component. If
this is still too general, consider the special case in which g is a constant
function, say g _ = 1.23 (assuming that b is a set of real numbers). Then
you are really solving the equation:

fx=1.23

In this case, the choice of ¢ is irrelevant (as long as it’s not an empty set),
so we can take it to be a singleton set. The set a could, for instance, be
the set of three-dimensional vectors, and f the vector length. Then the
pullback is the set of pairs (v, ()), where v is a vector of length 1.23 (a
solution to the equation +/(x? + y? + z2) = 1.23), and () is the dummy
element of the singleton set.

But pullbacks have more general applications, also in programming.
For instance, consider C++ classes as a category in which morphism are
arrows that connect subclasses to superclasses. We’ll consider inheri-
tance a transitive property, so if C inherits from B and B inherits from A
then we’ll say that C inherits from A (after all, you can pass a pointer to C
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where a pointer to A is expected). Also, we’ll assume that C inherits from
C, so we have the identity arrow for every class. This way subclassing is
aligned with subtyping. C++ also supports multiple inheritance, so you
can construct a diamond inheritance diagram with two classes B and C
inheriting from A, and a fourth class D multiply inheriting from B and
C. Normally, D would get two copies of A, which is rarely desirable; but
you can use virtual inheritance to have just one copy of A in D.

What would it mean to have D be a pullback in this diagram? It
would mean that any class E that multiply inherits from B and C is also
a subclass of D. This is not directly expressible in C++, where subtyping
is nominal (the C++ compiler wouldn’t infer this kind of class relation-
ship — it would require “duck typing”). But we could go outside of the
subtyping relationship and instead ask whether a cast from E to D would
be safe or not. This cast would be safe if D were the bare-bone combina-
tion of B and C, with no additional data and no overriding of methods.
And, of course, there would be no pullback if there is a name conflict
between some methods of B and C.

/\

B
4}\

\

A"
%

D
B
There’s also a more advanced use of a pullback in type inference. There
is often a need to unify types of two expressions. For instance, suppose

that the compiler wants to infer the type of a function:
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twice f x = f (f x)

It will assign preliminary types to all variables and sub-expressions. In
particular, it will assign:

f 11 to
X HE
f x o t2
f(fx) :: t3

from which it will deduce that:

twice :: t0 -> t1 -> t3

It will also come up with a set of constraints resulting from the rules of
function application:

to = t1 -> t2
to t2 -> t3

These constraints have to be unified by finding a set of types (or type
variables) that, when substituted for the unknown types in both expres-
sions, produce the same type. One such substitution is:

t1 = t2 = t3 = Int
twice :: (Int -> Int) -> Int -> Int

but, obviously, it’s not the most general one. The most general substi-
tution is obtained using a pullback. I won’t go into the details, because
they are beyond the scope of this book, but you can convince yourself
that the result should be:
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twice :: (t > t) >t >t

with t a free type variable.

Colimits

Just like all constructions in category theory, limits have their dual im-
age in opposite categories. When you invert the direction of all arrows
in a cone, you get a co-cone, and the universal one of those is called a
colimit. Notice that the inversion also affects the factorizing morphism,
which now flows from the universal co-cone to any other co-cone.

Cocone with a factorizing morphism h connecting two apexes.

A typical example of a colimit is a coproduct, which corresponds to the

diagram generated by 2, the category we’ve used in the definition of the
product.
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Both the product and the coproduct embody the essence of a pair of
objects, each in a different way.

Just like the terminal object was a limit, so the initial object is a
colimit corresponding to the diagram based on an empty category.

The dual of the pullback is called the pushout. It’s based on a diagram
called a span, generated by the category 1 < 2 — 3.

Continuity

I'said previously that functors come close to the idea of continuous map-
pings of categories, in the sense that they never break existing connec-
tions (morphisms). The actual definition of a continuous functor F from
a category C to C’ includes the requirement that the functor preserve
limits. Every diagram D in C can be mapped to a diagram F o D in C’ by
simply composing two functors. The continuity condition for F states
that, if the diagram D has a limit Lim D, then the diagram F - D also has
a limit, and it is equal to F(LimD).

- {: 5’
AN D (' )E )
Q )‘_-"F ("..'-—-h' —- "-_:')
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Notice that, because functors map morphisms to morphisms, and com-
positions to compositions, an image of a cone is always a cone. A com-
muting triangle is always mapped to a commuting triangle (functors
preserve composition). The same is true for the factorizing morphisms:
the image of a factorizing morphism is also a factorizing morphism. So
every functor is almost continuous. What may go wrong is the unique-
ness condition. The factorizing morphism in C’ might not be unique.
There may also be other “better cones” in C’ that were not available in
C.

A hom-functor is an example of a continuous functor. Recall that the
hom-functor, C(a, b), is contravariant in the first variable and covariant
in the second. In other words, it’s a functor:

C% x C — Set

When its second argument is fixed, the hom-set functor (which becomes
the representable presheaf) maps colimits in C to limits in Set; and when
its first argument is fixed, it maps limits to limits.

In Haskell, a hom-functor is the mapping of any two types to a func-
tion type, so it’s just a parameterized function type. When we fix the
second parameter, let’s say to String, we get the contravariant functor:

newtype ToString a = ToString (a -> String)
instance Contravariant ToString where
contramap f (ToString g) = ToString (g . f)

Continuity means that when ToString is applied to a colimit, for in-
stance a coproduct Either b c, it will produce a limit; in this case a
product of two function types:
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ToString (Either b ¢) ~ (b -> String, c -> String)

Indeed, any function of Either b c is implemented as a case statement
with the two cases being serviced by a pair of functions.

Similarly, when we fix the first argument of the hom-set, we get
the familiar reader functor. Its continuity means that, for instance, any
function returning a product is equivalent to a product of functions; in
particular:

r-=>(, b)) ~(r->a, r-=>hb)

I know what you’re thinking: You don’t need category theory to figure
these things out. And you’re right! Still, I find it amazing that such re-
sults can be derived from first principles with no recourse to bits and
bytes, processor architectures, compiler technologies, or even lambda
calculus.

If you're curious where the names “limit” and “continuity” come
from, they are a generalization of the corresponding notions from cal-
culus. In calculus limits and continuity are defined in terms of open
neighborhoods. Open sets, which define topology, form a category (a
poset).

Challenges

1. How would you describe a pushout in the category of C++
classes?

2. Show that the limit of the identity functor Id :: C — C is the
initial object.

3. Subsets of a given set form a category. A morphism in that cate-
gory is defined to be an arrow connecting two sets if the first is
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the subset of the second. What is a pullback of two sets in such
a category? What’s a pushout? What are the initial and terminal
objects?

4. Can you guess what a coequalizer is?

. Show that, in a category with a terminal object, a pullback to-
wards the terminal object is a product.

. Similarly, show that a pushout from an initial object (if one exists)
is the coproduct.

210



Free Monoids

ONOIDS ARE AN IMPORTANT concept in both category theory and in

programming. Categories correspond to strongly typed languages,
monoids to untyped languages. That’s because in a monoid you can
compose any two arrows, just as in an untyped language you can com-
pose any two functions (of course, you may end up with a runtime error
when you execute your program).

We’ve seen that a monoid may be described as a category with a
single object, where all logic is encoded in the rules of morphism com-
position. This categorical model is fully equivalent to the more tradi-
tional set-theoretical definition of a monoid, where we “multiply” two
elements of a set to get a third element. This process of “multiplication”
can be further dissected into first forming a pair of elements and then
identifying this pair with an existing element — their “product.”

What happens when we forgo the second part of multiplication —
the identification of pairs with existing elements? We can, for instance,
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start with an arbitrary set, form all possible pairs of elements, and call
them new elements. Then we’ll pair these new elements with all possible
elements, and so on. This is a chain reaction — we’ll keep adding new
elements forever. The result, an infinite set, will be almost a monoid.
But a monoid also needs a unit element and the law of associativity. No
problem, we can add a special unit element and identify some of the
pairs — just enough to support the unit and associativity laws.

Let’s see how this works in a simple example. Let’s start with a set of
two elements, {a,b}. We'll call them the generators of the free monoid.
First, we’ll add a special element e to serve as the unit. Next we’ll add
all the pairs of elements and call them “products”. The product of a and
b will be the pair (a, b). The product of b and a will be the pair (b, a), the
product of a with a will be (g, a), the product of b with b will be (b,b).
We can also form pairs with e, like (a,e), (e, b), etc., but we’ll identify
them with a, b, etc. So in this round we’ll only add (a, a), (a,b) and (b, a)
and (b,b), and end up with the set {e, a,b, (a,a), (a,b), (b,a), (b,b)}.

In the next round we’ll keep adding elements like: (a, (a,b)), ((a,b), a),
etc. At this point we’ll have to make sure that associativity holds, so
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we’ll identify (a, (b,a)) with ((a,b),a), etc. In other words, we won’t be
needing internal parentheses.

You can guess what the final result of this process will be: we’ll cre-
ate all possible lists of as and bs. In fact, if we represent e as an empty list,
we can see that our “multiplication” is nothing but list concatenation.

This kind of construction, in which you keep generating all pos-
sible combinations of elements, and perform the minimum number of
identifications — just enough to uphold the laws — is called a free con-
struction. What we have just done is to construct a free monoid from
the set of generators {a, b}.

Free Monoid in Haskell

A two-element set in Haskell is equivalent to the type Bool, and the
free monoid generated by this set is equivalent to the type [Bool] (list
of Bool). (I am deliberately ignoring problems with infinite lists.)

A monoid in Haskell is defined by the type class:

class Monoid m where
mempty :: m
mappend :: m =>m ->m

This just says that every Monoid must have a neutral element, which
is called mempty, and a binary function (multiplication) called mappend.
The unit and associativity laws cannot be expressed in Haskell and must
be verified by the programmer every time a monoid is instantiated.

The fact that a list of any type forms a monoid is described by this
instance definition:

213



instance Monoid [a] where
mempty = []
mappend = (++)

It states that an empty list [] is the unit element, and list concatenation
(++) is the binary operation.

As we have seen, a list of type a corresponds to a free monoid with
the set a serving as generators. The set of natural numbers with mul-
tiplication is not a free monoid, because we identify lots of products.
Compare for instance:

2% 3 =6
[2] ++ [3] = [2, 3] // not the same as [6]

That was easy, but the question is, can we perform this free construction
in category theory, where we are not allowed to look inside objects?
We’ll use our workhorse: the universal construction.

The second interesting question is, can any monoid be obtained
from some free monoid by identifying more than the minimum number
of elements required by the laws? I'll show you that this follows directly
from the universal construction.

Free Monoid Universal Construction

If you recall our previous experiences with universal constructions, you
might notice that it’s not so much about constructing something as
about selecting an object that best fits a given pattern. So if we want
to use the universal construction to “construct” a free monoid, we have
to consider a whole bunch of monoids from which to pick one. We need
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a whole category of monoids to chose from. But do monoids form a
category?

Let’s first look at monoids as sets equipped with additional structure
defined by unit and multiplication. We’ll pick as morphisms those func-
tions that preserve the monoidal structure. Such structure-preserving
functions are called homomorphisms. A monoid homomorphism must
map the product of two elements to the product of the mapping of the
two elements:

h(a@axb)=ha=xhb

and it must map unit to unit.

For instance, consider a homomorphism from lists of integers to in-
tegers. If we map [2] to 2 and [3] to 3, we have to map [2, 3] to 6,
because concatenation

(2] ++ [3] = [2, 3]

becomes multiplication

2 %3 =6

Now let’s forget about the internal structure of individual monoids, and
only look at them as objects with corresponding morphisms. You get a
category Mon of monoids.

Okay, maybe before we forget about internal structure, let us notice
an important property. Every object of Mon can be trivially mapped to
a set. It’s just the set of its elements. This set is called the underlying set.
In fact, not only can we map objects of Mon to sets, but we can also map
morphisms of Mon (homomorphisms) to functions. Again, this seems
sort of trivial, but it will become useful soon. This mapping of objects
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and morphisms from Mon to Set is in fact a functor. Since this functor
“forgets” the monoidal structure — once we are inside a plain set, we
no longer distinguish the unit element or care about multiplication —
it’s called a forgetful functor. Forgetful functors come up regularly in
category theory.

We now have two different views of Mon. We can treat it just like
any other category with objects and morphisms. In that view, we don’t
see the internal structure of monoids. All we can say about a particular
object in Mon is that it connects to itself and to other objects through
morphisms. The “multiplication” table of morphisms — the composition
rules — are derived from the other view: monoids-as-sets. By going to
category theory we haven’t lost this view completely — we can still
access it through our forgetful functor.

To apply the universal construction, we need to define a special
property that would let us search through the category of monoids and
pick the best candidate for a free monoid. But a free monoid is defined
by its generators. Different choices of generators produce different free
monoids (a list of Bool is not the same as a list of Int). Our construction
must start with a set of generators. So we’re back to sets!

That’s where the forgetful functor comes into play. We can use it to
X-ray our monoids. We can identify the generators in the X-ray images
of those blobs. Here’s how it works:

We start with a set of generators, x. That’s a set in Set.

The pattern we are going to match consists of a monoid m — an
object of Mon — and a function p in Set:

p::x->Umnm

where U is our forgetful functor from Mon to Set. This is a weird het-
erogeneous pattern — half in Mon and half in Set.
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The idea is that the function p will identify the set of generators
inside the X-ray image of m. It doesn’t matter that functions may be
lousy at identifying points inside sets (they may collapse them). It will
all be sorted out by the universal construction, which will pick the best
representative of this pattern.

Mon

We also have to define the ranking among candidates. Suppose we have
another candidate: a monoid n and a function that identifies the gener-
ators in its X-ray image:

q:: x=>Un
We'll say that m is better than n if there is a morphism of monoids (that’s
a structure-preserving homomorphism):

h::m->n
whose image under U (remember, U is a functor, so it maps morphisms
to functions) factorizes through p:

g=Uh.p

If you think of p as selecting the generators in m; and g as selecting
“the same” generators in n; then you can think of h as mapping these
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generators between the two monoids. Remember that h, by definition,
preserves the monoidal structure. It means that a product of two gener-
ators in one monoid will be mapped to a product of the corresponding
two generators in the second monoid, and so on.

This ranking may be used to find the best candidate — the free monoid.
Here’s the definition:

We'll say that m (together with the function p) is the free
monoid with the generators x if and only if there is a
unique morphism h from m to any other monoid n (together
with the function g) that satisfies the above factorization

property.

Incidentally, this answers our second question. The function Uh is the
one that has the power to collapse multiple elements of Um to a single
element of Un. This collapse corresponds to identifying some elements
of the free monoid. Therefore any monoid with generators x can be
obtained from the free monoid based on x by identifying some of the
elements. The free monoid is the one where only the bare minimum of
identifications have been made.
We’ll come back to free monoids when we talk about adjunctions.
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Challenges

1. You might think (as I did, originally) that the requirement that a
homomorphism of monoids preserve the unit is redundant. After
all, we know that for all a

haxhe=h(@a=*xe)=nha

So he acts like a right unit (and, by analogy, as a left unit). The
problem is that ha, for all a might only cover a sub-monoid of the
target monoid. There may be a “true” unit outside of the image
of h. Show that an isomorphism between monoids that preserves
multiplication must automatically preserve unit.

2. Consider a monoid homomorphism from lists of integers with
concatenation to integers with multiplication. What is the image
of the empty list [1? Assume that all singleton lists are mapped to
the integers they contain, that is [3] is mapped to 3, etc. What’s
the image of [1, 2, 3, 4]? How many different lists map to the
integer 127 Is there any other homomorphism between the two
monoids?

3. What is the free monoid generated by a one-element set? Can you
see what it’s isomorphic to?
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Representable Functors

T’s ABOUT TIME we had a little talk about sets. Mathematicians have
a love/hate relationship with set theory. It’s the assembly language of
mathematics — at least it used to be. Category theory tries to step away
from set theory, to some extent. For instance, it’s a known fact that the
set of all sets doesn’t exist, but the category of all sets, Set, does. So that’s
good. On the other hand, we assume that morphisms between any two
objects in a category form a set. We even called it a hom-set. To be
fair, there is a branch of category theory where morphisms don’t form
sets. Instead they are objects in another category. Those categories that
use hom-objects rather than hom-sets, are called enriched categories. In
what follows, though, we’ll stick to categories with good old-fashioned
hom-sets.
A set is the closest thing to a featureless blob you can get outside of
categorical objects. A set has elements, but you can’t say much about
these elements. If you have a finite set, you can count the elements. You
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can kind of count the elements of an infinite set using cardinal numbers.
The set of natural numbers, for instance, is smaller than the set of real
numbers, even though both are infinite. But, maybe surprisingly, a set
of rational numbers is the same size as the set of natural numbers.

Other than that, all the information about sets can be encoded in
functions between them — especially the invertible ones called isomor-
phisms. For all intents and purposes isomorphic sets are identical. Be-
fore I summon the wrath of foundational mathematicians, let me explain
that the distinction between equality and isomorphism is of fundamen-
tal importance. In fact it is one of the main concerns of the latest branch
of mathematics, the Homotopy Type Theory (HoTT). I'm mentioning
HoTT because it’s a pure mathematical theory that takes inspiration
from computation, and one of its main proponents, Vladimir Voevod-
sky, had a major epiphany while studying the Coq theorem prover. The
interaction between mathematics and programming goes both ways.

The important lesson about sets is that it’s okay to compare sets of
unlike elements. For instance, we can say that a given set of natural
transformations is isomorphic to some set of morphisms, because a set
is just a set. Isomorphism in this case just means that for every natural
transformation from one set there is a unique morphism from the other
set and vice versa. They can be paired against each other. You can’t com-
pare apples with oranges, if they are objects from different categories,
but you can compare sets of apples against sets of oranges. Often trans-
forming a categorical problem into a set-theoretical problem gives us
the necessary insight or even lets us prove valuable theorems.
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The Hom Functor

Every category comes equipped with a canonical family of mappings to
Set. Those mappings are in fact functors, so they preserve the structure
of the category. Let’s build one such mapping.

Let’s fix one object a in C and pick another object x also in C. The
hom-set C(a, x) is a set, an object in Set. When we vary x, keeping a
fixed, C(a, x) will also vary in Set. Thus we have a mapping from x to
Set.

e Set”

a)f—ﬁ'@‘c@m)

If we want to stress the fact that we are considering the hom-set as a
mapping in its second argument, we use the notation C(a, —) with the
dash serving as the placeholder for the argument.

This mapping of objects is easily extended to the mapping of mor-
phisms. Let’s take a morphism f in C between two arbitrary objects
x and y. The object x is mapped to the set C(a, x), and the object y is
mapped to C(a, y), under the mapping we have just defined. If this map-
ping is to be a functor, f must be mapped to a function between the two
sets: C(a, x) — C(a, y)

Let’s define this function point-wise, that is for each argument sepa-
rately. For the argument we should pick an arbitrary element of C(a, x)
— let’s call it h. Morphisms are composable, if they match end to end. It
so happens that the target of A matches the source of f, so their com-
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position:

fehi:a—y

is a morphism going from a to y. It is therefore a member of C(a, y).

Set
e L (ax)
2 o
R, GHeen

a
- .F

We have just found our function from C(a, x) to C(a, y), which can serve
as the image of f. If there is no danger of confusion, we’ll write this lifted
function as: C(a, f) and its action on a morphism h as:

Cla, fh=feh

Since this construction works in any category, it must also work in the
category of Haskell types. In Haskell, the hom-functor is better known
as the Reader functor:

type Reader a x = a => x

instance Functor (Reader a) where
fmap f h =f . h

Now let’s consider what happens if, instead of fixing the source of the
hom-set, we fix the target. In other words, we’re asking the question
if the mapping C(—, a) is also a functor. It is, but instead of being co-
variant, it’s contravariant. That’s because the same kind of matching
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of morphisms end to end results in postcomposition by f; rather than
precomposition, as was the case with C(a, —).

We have already seen this contravariant functor in Haskell. We
called it Op:

type Op a x = x => a

instance Contravariant (Op a) where
contramap f h=h . f

Finally, if we let both objects vary, we get a profunctor C(—, =), which is
contravariant in the first argument and covariant in the second (to un-
derline the fact that the two arguments may vary independently, we use
a double dash as the second placeholder). We have seen this profunctor
before, when we talked about functoriality:

instance Profunctor (->) where
dimap ab c¢d bc = cd . bc . ab
Imap = flip (.)
rmap = (.)

The important lesson is that this observation holds in any category: the
mapping of objects to hom-sets is functorial. Since contravariance is
equivalent to a mapping from the opposite category, we can state this
fact succinctly as:

C(—,=) :: C°? x C — Set

Representable Functors

We’ve seen that, for every choice of an object a in C, we get a functor
from C to Set. This kind of structure-preserving mapping to Set is often
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called a representation. We are representing objects and morphisms of
C as sets and functions in Set.

The functor C(a, —) itself is sometimes called representable. More
generally, any functor F that is naturally isomorphic to the hom-functor,
for some choice of g, is called representable. Such a functor must neces-
sarily be Set-valued, since C(a, —) is.

I said before that we often think of isomorphic sets as identical.
More generally, we think of isomorphic objects in a category as iden-
tical. That’s because objects have no structure other than their relation
to other objects (and themselves) through morphisms.

For instance, we’ve previously talked about the category of
monoids, Mon, that was initially modeled with sets. But we were careful
to pick as morphisms only those functions that preserved the monoidal
structure of those sets. So if two objects in Mon are isomorphic, mean-
ing there is an invertible morphism between them, they have exactly
the same structure. If we peeked at the sets and functions that they were
based upon, we’d see that the unit element of one monoid was mapped
to the unit element of another, and that a product of two elements was
mapped to the product of their mappings.

The same reasoning can be applied to functors. Functors between
two categories form a category in which natural transformations play
the role of morphisms. So two functors are isomorphic, and can be
thought of as identical, if there is an invertible natural transformation
between them.

Let’s analyze the definition of the representable functor from this
perspective. For F to be representable we require that: There be an object
a in C; one natural transformation a from C(a, —) to F; another natural
transformation, P, in the opposite direction; and that their composition
be the identity natural transformation.
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Let’s look at the component of a at some object x. It’s a function in
Set:
ay : C(a,x) > Fx

The naturality condition for this transformation tells us that, for any
morphism f from x to y, the following diagram commutes:

Ffeoay=a,°Cl(a, f)

In Haskell, we would replace natural transformations with polymorphic
functions:

alpha :: forall x. (a => x) => F x

with the optional forall quantifier. The naturality condition

fmap f . alpha = alpha . fmap f
is automatically satisfied due to parametricity (it’s one of those theo-
rems for free I mentioned earlier), with the understanding that fmap
on the left is defined by the functor F, whereas the one on the right is
defined by the reader functor. Since fmap for reader is just function pre-

composition, we can be even more explicit. Acting on h, an element of
C(a, x), the naturality condition simplifies to:

fmap f (alpha h) = alpha (f . h)

The other transformation, beta, goes the opposite way:

beta :: forall x. F x => (a => x)

It must respect naturality conditions, and it must be the inverse of
alpha:
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alpha . beta = id = beta . alpha

We will see later that a natural transformation from C(a, —) to any Set-
valued functor always exists (Yoneda’s lemma) but it is not necessarily
invertible.

Let me give you an example in Haskell with the list functor and Int
as a. Here’s a natural transformation that does the job:

alpha :: forall x. (Int -> x) -> [x]
alpha h = map h [12]

I have arbitrarily picked the number 12 and created a singleton list with
it. I can then fmap the function h over this list and get a list of the type
returned by h. (There are actually as many such transformations as there
are list of integers.)

The naturality condition is equivalent to the composability of map
(the list version of fmap):

map f (map h [12]) = map (f . h) [12]

But if we tried to find the inverse transformation, we would have to go
from a list of arbitrary type x to a function returning x:

beta :: forall x. [x] -> (Int -> x)

You might think of retrieving an x from the list, e.g., using head, but
that won’t work for an empty list. Notice that there is no choice for the
type a (in place of Int) that would work here. So the list functor is not
representable.

Remember when we talked about Haskell (endo-) functors being
a little like containers? In the same vein we can think of representable
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functors as containers for storing memoized results of function calls (the
members of hom-sets in Haskell are just functions). The representing
object, the type a in C(a, —), is thought of as the key type, with which
we can access the tabulated values of a function. The transformation we
called alpha is called tabulate, and its inverse, beta, is called index.
Here’s a (slightly simplified) Representable class definition:

class Representable f where
type Rep f :: %
tabulate :: (Rep f => x) -> f x
index i £ x =>Rep f => x

Notice that the representing type, our a, which is called Rep f here, is
part of the definition of Representable. The star just means that Rep f
is a type (as opposed to a type constructor, or other more exotic kinds).

Infinite lists, or streams, which cannot be empty, are representable.

data Stream x = Cons x (Stream x)

You can think of them as memoized values of a function taking an
Integer as an argument. (Strictly speaking, I should be using non-
negative natural numbers, but I didn’t want to complicate the code.)
To tabulate such a function, you create an infinite stream of values.
Of course, this is only possible because Haskell is lazy. The values are
evaluated on demand. You access the memoized values using index:

instance Representable Stream where
type Rep Stream = Integer
tabulate f = Cons (f 0) (tabulate (f . (+1)))
index (Cons b bs) n = if n == 0 then b else index bs (n - 1)
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It’s interesting that you can implement a single memoization scheme to
cover a whole family of functions with arbitrary return types.

Representability for contravariant functors is similarly defined, ex-
cept that we keep the second argument of C(—,a) fixed. Or, equiva-
lently, we may consider functors from C° to Set, because C°?(a, —) is
the same as C(—, a).

There is an interesting twist to representability. Remember that
hom-sets can internally be treated as exponential objects, in Cartesian
closed categories. The hom-set C(a, x) is equivalent to x%, and for a rep-
resentable functor F we can write: =% = F.

Let’s take the logarithm of both sides, just for kicks: a = logF

Of course, this is a purely formal transformation, but if you know
some of the properties of logarithms, it is quite helpful. In particular, it
turns out that functors that are based on product types can be repre-
sented with sum types, and that sum-type functors are not in general
representable (example: the list functor).

Finally, notice that a representable functor gives us two different im-
plementations of the same thing — one a function, one a data structure.
They have exactly the same content — the same values are retrieved us-
ing the same keys. That’s the sense of “sameness” I was talking about.
Two naturally isomorphic functors are identical as far as their contents
are involved. On the other hand, the two representations are often im-
plemented differently and may have different performance characteris-
tics. Memoization is used as a performance enhancement and may lead
to substantially reduced run times. Being able to generate different rep-
resentations of the same underlying computation is very valuable in
practice. So, surprisingly, even though it’s not concerned with perfor-
mance at all, category theory provides ample opportunities to explore
alternative implementations that have practical value.

229



Challenges

1. Show that the hom-functors map identity morphisms in C to cor-
responding identity functions in Set.

2. Show that Maybe is not representable.

3. Is the Reader functor representable?

4. Using Stream representation, memoize a function that squares its
argument.

5. Show that tabulate and index for Stream are indeed the inverse
of each other. (Hint: use induction.)

6. The functor:

Pair a = Pair a a

is representable. Can you guess the type that represents it? Im-
plement tabulate and index.

Bibliography

1. The Catsters video about representable functors!.

1https://www.youtube.com/watch?v:4ngKUzyrhM
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The Yoneda Lemma

OST CONSTRUCTIONS IN category theory are generalizations of re-

sults from other more specific areas of mathematics. Things like
products, coproducts, monoids, exponentials, etc., have been known
long before category theory. They might have been known under dif-
ferent names in different branches of mathematics. A Cartesian product
in set theory, a meet in order theory, a conjunction in logic — they are
all specific examples of the abstract idea of a categorical product.

The Yoneda lemma stands out in this respect as a sweeping state-
ment about categories in general with little or no precedent in other
branches of mathematics. Some say that its closest analog is Cayley’s
theorem in group theory (every group is isomorphic to a permutation
group of some set).

The setting for the Yoneda lemma is an arbitrary category C together
with a functor F from C to Set. We’ve seen in the previous section that
some Set-valued functors are representable, that is isomorphic to a hom-
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functor. The Yoneda lemma tells us that all Set-valued functors can be
obtained from hom-functors through natural transformations, and it ex-
plicitly enumerates all such transformations.

When I talked about natural transformations, I mentioned that the
naturality condition can be quite restrictive. When you define a compo-
nent of a natural transformation at one object, naturality may be strong
enough to “transport” this component to another object that is con-
nected to it through a morphism. The more arrows between objects in
the source and the target categories there are, the more constraints you
have for transporting the components of natural transformations. Set
happens to be a very arrow-rich category.

The Yoneda lemma tells us that a natural transformation between
a hom-functor and any other functor F is completely determined by
specifying the value of its single component at just one point! The rest
of the natural transformation just follows from naturality conditions.

So let’s review the naturality condition between the two functors
involved in the Yoneda lemma. The first functor is the hom-functor. It
maps any object x in C to the set of morphisms C(a, x) — for a a fixed
object in C. We’ve also seen that it maps any morphism f from x — y
to C(a, f).

The second functor is an arbitrary Set-valued functor F.

Let’s call the natural transformation between these two functors .
Because we are operating in Set, the components of the natural trans-

formation, like a, or «

> are just regular functions between sets:

ay :: Ca,x) - Fx

@y i+ Cla,y) = Fy
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And because these are just functions, we can look at their values at
specific points. But what’s a point in the set C(a, x)? Here’s the key
observation: Every point in the set C(a, x) is also a morphism A from a
to x.

So the naturality square for a:

ay°C(a, f) =Ffoay

becomes, point-wise, when acting on h:

ay(Cla, f)h) = (Ff)(axh)

You might recall from the previous section that the action of the hom-
functor C(a, —) on a morphism f was defined as precomposition:

Cla, fh=fh

which leads to:
ay(f oh) = (Ff)(axh)

Just how strong this condition is can be seen by specializing it to the
case of x = a.
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In that case h becomes a morphism from a to a. We know that there is
at least one such morphism, 4 = id,. Let’s plug it in:

ayf = (Ff)(aid,)

Notice what has just happened: The left hand side is the action of «,
on an arbitrary element f of C(a, y). And it is totally determined by the
single value of ¢, at id,;. We can pick any such value and it will generate
a natural transformation. Since the values of ¢, are in the set Fa, any
point in Fa will define some a.

Conversely, given any natural transformation « from C(a, —) to F,
you can evaluate it at id, to get a point in Fa.

We have just proven the Yoneda lemma:

There is a one-to-one correspondence between natural
transformations from C(a, —) to F and elements of Fa.

in other words,
Nat(C(a,—),F) = Fa

Or, if we use the notation |C, Set| for the functor category between C and
Set, the set of natural transformation is just a hom-set in that category,
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and we can write:
[C,Set]|(C(a,—),F) = Fa

I'll explain later how this correspondence is in fact a natural isomor-
phism.

Now let’s try to get some intuition about this result. The most amaz-
ing thing is that the whole natural transformation crystallizes from just
one nucleation site: the value we assign to it at id,. It spreads from that
point following the naturality condition. It floods the image of C in Set.
So let’s first consider what the image of C is under C(a, —).

Let’s start with the image of a itself. Under the hom-functor C(a, —),
a is mapped to the set C(a, a). Under the functor F, on the other hand, it
is mapped to the set Fa. The component of the natural transformation ¢,
is some function from C(a, a) to Fa. Let’s focus on just one point in the
set C(a, a), the point corresponding to the morphism id,. To emphasize
the fact that it’s just a point in a set, let’s call it p. The component «,
should map p to some point g in Fa. I'll show you that any choice of q
leads to a unique natural transformation.

cla,a)

con(e)
a

':#

/1 [~ 8

9%
Fa

The first claim is that the choice of one point g uniquely determines the
rest of the function «,. Indeed, let’s pick any other point, p” in C(a, a),
corresponding to some morphism g from a to a. And here’s where the
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magic of the Yoneda lemma happens: g can be viewed as a point p’ in
the set C(a, a). At the same time, it selects two functions between sets.
Indeed, under the hom-functor, the morphism g is mapped to a function
C(a, g); and under F it’s mapped to Fg.

Ela,a)

Now let’s consider the action of C(a, g) on our original p which, as you
remember, corresponds to id,. It is defined as precomposition, g - id,,
which is equal to g, which corresponds to our point p’. So the morphism
g is mapped to a function that, when acting on p produces p’, which is
g. We have come full circle!

Now consider the action of Fg on q. It is some ¢’, a point in Fa. To
complete the naturality square, p’ must be mapped to ¢’ under «,. We
picked an arbitrary p’ (an arbitrary g) and derived its mapping under
a,. The function a, is thus completely determined.

The second claim is that «, is uniquely determined for any object x
in C that is connected to a. The reasoning is analogous, except that now
we have two more sets, C(a, x) and Fx, and the morphism g from a to
x is mapped, under the hom-functor, to:

C(a, g) :: C(a,a) — C(a, x)
and under F to:

Fg: Fa— Fx
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Again, C(a, g) acting on our p is given by the precomposition: g ¢ id,,
which corresponds to a point p’ in C(a, x). Naturality determines the
value of «, acting on p’ to be:

q = (Fg)q

Since p” was arbitrary, the whole function «, is thus determined.

Cla.a)
ela,-)

a
TS

What if there are objects in C that have no connection to a? They are
all mapped under C(a,—) to a single set — the empty set. Recall that
the empty set is the initial object in the category of sets. It means that
there is a unique function from this set to any other set. We called this
function absurd. So here, again, we have no choice for the component
of the natural transformation: it can only be absurd.

One way of understanding the Yoneda lemma is to realize that nat-
ural transformations between Set-valued functors are just families of
functions, and functions are in general lossy. A function may collapse
information and it may cover only parts of its codomain. The only func-
tions that are not lossy are the ones that are invertible — the isomor-
phisms. It follows then that the best structure-preserving Set-valued
functors are the representable ones. They are either the hom-functors or
the functors that are naturally isomorphic to hom-functors. Any other
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functor F is obtained from a hom-functor through a lossy transforma-
tion. Such a transformation may not only lose information, but it may
also cover only a small part of the image of the functor F in Set.

Yoneda in Haskell

We have already encountered the hom-functor in Haskell under the
guise of the reader functor:

type Reader a x = a => x

The reader maps morphisms (here, functions) by precomposition:

instance Functor (Reader a) where
fmap f h =f . h

The Yoneda lemma tells us that the reader functor can be naturally
mapped to any other functor.

A natural transformation is a polymorphic function. So given a
functor F, we have a mapping to it from the reader functor:

alpha :: forall x . (a => x) => F x
As usual, forall is optional, but I like to write it explicitly to emphasize
parametric polymorphism of natural transformations.

The Yoneda lemma tells us that these natural transformations are in
one-to-one correspondence with the elements of F a:

forall x . (a->x) >F x=F a
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The right hand side of this identity is what we would normally consider
a data structure. Remember the interpretation of functors as generalized
containers? F a is a container of a. But the left hand side is a polymor-
phic function that takes a function as an argument. The Yoneda lemma
tells us that the two representations are equivalent — they contain the
same information.

Another way of saying this is: Give me a polymorphic function of
the type:

alpha :: forall x . (@ => x) => F x
and I'll produce a container of a. The trick is the one we used in the proof

of the Yoneda lemma: we call this function with id to get an element of
F a:

alpha id :: F a

The converse is also true: Given a value of the type F a:

fa :: F a

one can define a polymorphic function:

alpha h = fmap h fa

of the correct type. You can easily go back and forth between the two
representations.

The advantage of having multiple representations is that one might
be easier to compose than the other, or that one might be more efficient
in some applications than the other.
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The simplest illustration of this principle is the code transformation
that is often used in compiler construction: the continuation passing
style or cps. It’s the simplest application of the Yoneda lemma to the
identity functor. Replacing F with identity produces:

forallr . (a->r) ->r = a

The interpretation of this formula is that any type a can be replaced by
a function that takes a “handler” for a. A handler is a function accepting
a and performing the rest of the computation — the continuation. (The
type r usually encapsulates some kind of status code.)

This style of programming is very common in Uls, in asynchronous
systems, and in concurrent programming. The drawback of cps is that it
involves inversion of control. The code is split between producers and
consumers (handlers), and is not easily composable. Anybody who’s
done any amount of nontrivial web programming is familiar with the
nightmare of spaghetti code from interacting stateful handlers. As we’ll
see later, judicious use of functors and monads can restore some com-
positional properties of cps.

Co-Yoneda

As usual, we get a bonus construction by inverting the direction of ar-
rows. The Yoneda lemma can be applied to the opposite category C°? to
give us a mapping between contravariant functors.

Equivalently, we can derive the co-Yoneda lemma by fixing the
target object of our hom-functors instead of the source. We get the
contravariant hom-functor from C to Set: C(—,a). The contravariant
version of the Yoneda lemma establishes one-to-one correspondence
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between natural transformations from this functor to any other con-
travariant functor F and the elements of the set Fa:

Nat(C(—,a),F) = Fa

Here’s the Haskell version of the co-Yoneda lemma:

forall x . (x =>a) >F x =F a

Notice that in some literature it’s the contravariant version that’s called
the Yoneda lemma.

Challenges

1. Show that the two functions phi and psi that form the Yoneda
isomorphism in Haskell are inverses of each other.

phi :: (forall x . (a =>x) -=> F x) -=> F a
phi alpha = alpha id

psi :: F a -> (forall x . (a => x) => F x)
psi fa h = fmap h fa

2. A discrete category is one that has objects but no morphisms
other than identity morphisms. How does the Yoneda lemma
work for functors from such a category?

3. A list of units [ ()] contains no other information but its length.
So, as a data type, it can be considered an encoding of integers.
An empty list encodes zero, a singleton [ ()] (a value, not a type)
encodes one, and so on. Construct another representation of this
data type using the Yoneda lemma for the list functor.
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15.4 Bibliography

1. Catsters! video.

1https://www.youtube.com/watch?v=TLMxHB19khE
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Yoneda Embedding

E’VE SEEN PREVIOUSLY that, when we fix an object a in the cate-
gory C, the mapping C(a,—) is a (covariant) functor from C to
Set.
x — C(a, x)

(The codomain is Set because the hom-set C(a, x) is a set.) We call this
mapping a hom-functor — we have previously defined its action on mor-
phisms as well.

Now let’s vary a in this mapping. We get a new mapping that assigns
the hom-functor C(a, —) to any a.

a— C(a,—)

It’s a mapping of objects from category C to functors, which are ob-
jects in the functor category (see the section about functor categories in
Natural Transformations). Let’s use the notation [C, Set| for the functor
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category from C to Set. You may also recall that hom-functors are the
prototypical representable functors.

Every time we have a mapping of objects between two categories,
it’s natural to ask if such a mapping is also a functor. In other words
whether we can lift a morphism from one category to a morphism in
the other category. A morphism in C is just an element of C(a, b), but a
morphism in the functor category |C, Set| is a natural transformation. So
we are looking for a mapping of morphisms to natural transformations.

Let’s see if we can find a natural transformation corresponding to a
morphism f :: a — b. First, lets see what a and b are mapped to. They
are mapped to two functors: C(a,—) and C(b, —). We need a natural
transformation between those two functors.

And here’s the trick: we use the Yoneda lemma:

[C,Set]|(C(a,—),F) = Fa
and replace the generic F with the hom-functor C(b, —). We get:

C. Set](C(a,~),C(b,~)) = C(b,a)

a)/‘fﬁll_:lﬁ @ _C(“/*)

VIR i s OO
CD”EZZ—T"O )
b

This is exactly the natural transformation between the two hom-
functors we were looking for, but with a little twist: We have a map-
ping between a natural transformation and a morphism — an element

244



of C(b,a) — that goes in the “wrong” direction. But that’s okay; it only
means that the functor we are looking at is contravariant.

c Fuu CC, 5&'&)

Cb,a) (b €--- *“’(l) N(a, £1.C0,-))

— et

Actually, we’ve got even more than we bargained for. The mapping from
C to [C,Set| is not only a contravariant functor — it is a fully faith-
ful functor. Fullness and faithfulness are properties of functors that de-
scribe how they map hom-sets.

A faithful functor is injective on hom-sets, meaning that it maps
distinct morphisms to distinct morphisms. In other words, it doesn’t
coalesce them.

A full functor is surjective on hom-sets, meaning that it maps one
hom-set onto the other hom-set, fully covering the latter.

A fully faithful functor F is a bijection on hom-sets — a one to one
matching of all elements of both sets. For every pair of objects a and b in
the source category C there is a bijection between C(a, b) and D(Fa, Fb),
where D is the target category of F (in our case, the functor category,
[C, Set]). Notice that this doesn’t mean that F is a bijection on objects.
There may be objects in D that are not in the image of F, and we can’t
say anything about hom-sets for those objects.
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The Embedding

The (contravariant) functor we have just described, the functor that
maps objects in C to functors in [C, Set]:

a— C(a,—)

defines the Yoneda embedding. It embeds a category C (strictly speaking,
the category C°?, because of contravariance) inside the functor category
|C, Set]. It not only maps objects in C to functors, but also faithfully
preserves all connections between them.

This is a very useful result because mathematicians know a lot about
the category of functors, especially functors whose codomain is Set. We
can get a lot of insight about an arbitrary category C by embedding it
in the functor category.

Of course there is a dual version of the Yoneda embedding, some-
times called the co-Yoneda embedding. Observe that we could have
started by fixing the target object (rather than the source object) of each
hom-set, C(—, a). That would give us a contravariant hom-functor. Con-
travariant functors from C to Set are our familiar presheaves (see, for
instance, Limits and Colimits). The co-Yoneda embedding defines the
embedding of a category C in the category of presheaves. Its action on
morphisms is given by:

[C, Set|(C(—,a),C(—,b))

IR

C(a,b)

Again, mathematicians know a lot about the category of presheaves, so
being able to embed an arbitrary category in it is a big win.
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Application to Haskell

In Haskell, the Yoneda embedding can be represented as the isomor-
phism between natural transformations amongst reader functors on the
one hand, and functions (going in the opposite direction) on the other

hand:

forall x. (a ->x) > (b ->x) =b -> a

(Remember, the reader functor is equivalent to ((->) a).)

The left hand side of this identity is a polymorphic function that,
given a function from a to x and a value of type b, can produce a value
of type x ('m uncurrying — dropping the parentheses around — the
function b -> x). The only way this can be done for all x is if our func-
tion knows how to convert a b to an a. It has to secretly have access to
a functionb -> a.

Given such a converter, btoa, one can define the left hand side, call
it fromy, as:

fromY :: (@ => x) => b > x
fromY f b = f (btoa b)

Conversely, given a function fromY we can recover the converter by
calling fromY with the identity:

fromY id :: b -> a

This establishes the bijection between functions of the type fromY and
btoa.

An alternative way of looking at this isomorphism is that it’s a cps
encoding of a function from b to a. The argument a -> x is a contin-
uation (the handler). The result is a function from b to x which, when

247



called with a value of type b, will execute the continuation precomposed
with the function being encoded.

The Yoneda embedding also explains some of the alternative repre-
sentations of data structures in Haskell. In particular, it provides a very
useful representation’ of lenses from the Control.Lens library.

Preorder Example

This example was suggested by Robert Harper. It’s the application of the
Yoneda embedding to a category defined by a preorder. A preorder is a
set with an ordering relation between its elements that’s traditionally
written as < (less than or equal). The “pre” in preorder is there because
we’re only requiring the relation to be transitive and reflexive but not
necessarily antisymmetric (so it’s possible to have cycles).

A set with the preorder relation gives rise to a category. The objects
are the elements of this set. A morphism from object a to b either doesn’t
exist, if the objects cannot be compared or if it’s not true that a < b; or
it exists if a < b, and it points from a to b. There is never more than one
morphism from one object to another. Therefore any hom-set in such a
category is either an empty set or a one-element set. Such a category is
called thin.

It’s easy to convince yourself that this construction is indeed a cate-
gory: The arrows are composable because, if a < band b < ¢ then a < ¢;
and the composition is associative. We also have the identity arrows
because every element is (less than or) equal to itself (reflexivity of the
underlying relation).

1https://bartoszmilewski.com/2®15/@7/13/from—lenses—to—yoneda—
embedding/
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We can now apply the co-Yoneda embedding to a preorder category.
In particular, we’re interested in its action on morphisms:

C, Set](C(~, a),C(~,b)) = C(a, )

The hom-set on the right hand side is non-empty if and only if a < b
— in which case it’s a one-element set. Consequently, if a < b, there
exists a single natural transformation on the left. Otherwise there is no
natural transformation.

So what’s a natural transformation between hom-functors in a pre-
order? It should be a family of functions between sets C(—,a) and
C(—,b). In a preorder, each of these sets can either be empty or a sin-
gleton. Let’s see what kind of functions are there at our disposal.

There is a function from an empty set to itself (the identity acting on
an empty set), a function absurd from an empty set to a singleton set (it
does nothing, since it only needs to be defined for elements of an empty
set, of which there are none), and a function from a singleton to itself
(the identity acting on a one-element set). The only combination that is
forbidden is the mapping from a singleton to an empty set (what would
the value of such a function be when acting on the single element?).

So our natural transformation will never connect a singleton hom-
set to an empty hom-set. In other words, if x < a (singleton hom-set
C(x,a)) then C(x,b) cannot be empty. A non-empty C(x, b) means that
x is less or equal to b. So the existence of the natural transformation in
question requires that, for every x, if x < a then x <b.

forall x,x <a=x<b
On the other hand, co-Yoneda tells us that the existence of this natural

transformation is equivalent to C(a,b) being non-empty, or to a < b.

249



Together, we get:
a<bifandonlyifforall x,x <a=x<b

We could have arrived at this result directly. The intuition is that, ifa < b
then all elements that are below a must also be below b. Conversely,
when you substitute a for x on the right hand side, it follows that a <
b. But you must admit that arriving at this result through the Yoneda
embedding is much more exciting.

Naturality

The Yoneda lemma establishes the isomorphism between the set of nat-
ural transformations and an object in Set. Natural transformations are
morphisms in the functor category [C, Set|. The set of natural transfor-
mation between any two functors is a hom-set in that category. The
Yoneda lemma is the isomorphism:

|C,Set]|(C(a,—),F) = Fa

This isomorphism turns out to be natural in both F and a. In other words,
it’s natural in (F, a), a pair taken from the product category [C, Set| x C.
Notice that we are now treating F as an object in the functor category.

Let’s think for a moment what this means. A natural isomorphism is
an invertible natural transformation between two functors. And indeed,
the right hand side of our isomorphism is a functor. It’s a functor from
[C,Set] x C to Set. Its action on a pair (F,a) is a set — the result of
evaluating the functor F at the object a. This is called the evaluation
functor.

The left hand side is also a functor that takes (F, a) to a set of natural
transformations |C, Set|(C(a, —), F).
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To show that these are really functors, we should also define their
action on morphisms. But what’s a morphism between a pair (F,a) and
(G,b)? It’s a pair of morphisms, (®, f); the first being a morphism be-
tween functors — a natural transformation — the second being a regular
morphism in C.

The evaluation functor takes this pair (®, f) and maps it to a func-
tion between two sets, Fa and Gb. We can easily construct such a func-
tion from the component of ® at a (which maps Fa to Ga) and the mor-
phism f lifted by G:

(Gf) @,

Notice that, because of naturality of @, this is the same as:

@y o (Ff)

I’'m not going to prove the naturality of the whole isomorphism — after
you’ve established what the functors are, the proof is pretty mechanical.
It follows from the fact that our isomorphism is built up from functors
and natural transformations. There is simply no way for it to go wrong.

Challenges

1. Express the co-Yoneda embedding in Haskell.

2. Show that the bijection we established between fromY and btoa is
an isomorphism (the two mappings are the inverse of each other).

3. Work out the Yoneda embedding for a monoid. What functor cor-
responds to the monoid’s single object? What natural transforma-
tions correspond to monoid morphisms?

4. What is the application of the covariant Yoneda embedding to
preorders? (Question suggested by Gershom Bazerman.)
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5. Yoneda embedding can be used to embed an arbitrary functor cat-
egory [C,D| in the functor category [|C, D], Set|. Figure out how
it works on morphisms (which in this case are natural transfor-
mations).
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Part Three
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It’s All About Morphisms

F I HAVEN'T convinced you yet that category theory is all about mor-

phisms then I haven’t done my job properly. Since the next topic is
adjunctions, which are defined in terms of isomorphisms of hom-sets, it
makes sense to review our intuitions about the building blocks of hom-
sets. Also, you’ll see that adjunctions provide a more general language
to describe a lot of constructions we’ve studied before, so it might help
to review them too.

Functors

To begin with, you should really think of functors as mappings of mor-
phisms — the view that’s emphasized in the Haskell definition of the
Functor typeclass, which revolves around fmap. Of course, functors also
map objects — the endpoints of morphisms — otherwise we wouldn’t be
able to talk about preserving composition. Objects tell us which pairs of
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morphisms are composable. The target of one morphism must be equal
to the source of the other — if they are to be composed. So if we want
the composition of morphisms to be mapped to the composition of lifted
morphisms, the mapping of their endpoints is pretty much determined.

Commuting Diagrams

A lot of properties of morphisms are expressed in terms of commuting
diagrams. If a particular morphism can be described as a composition
of other morphisms in more than one way, then we have a commuting
diagram.

In particular, commuting diagrams form the basis of almost all uni-
versal constructions (with the notable exceptions of the initial and ter-
minal objects). We've seen this in the definitions of products, coprod-
ucts, various other (co-)limits, exponential objects, free monoids, etc.

The product is a simple example of a universal construction. We pick
two objects a and b and see if there exists an object c, together with a
pair of morphisms p and g, that has the universal property of being their
product.

A product is a special case of a limit. A limit is defined in terms of cones.
A general cone is built from commuting diagrams. Commutativity of
those diagrams may be replaced with a suitable naturality condition
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for the mapping of functors. This way commutativity is reduced to the
role of the assembly language for the higher level language of natural
transformations.

Natural Transformations

In general, natural transformations are very convenient whenever we
need a mapping from morphisms to commuting squares. Two opposing
sides of a naturality square are the mappings of some morphism f under
two functors F and G. The other sides are the components of the natural
transformation (which are also morphisms).

Naturality means that when you move to the “neighboring” component
(by neighboring I mean connected by a morphism), you're not going
against the structure of either the category or the functors. It doesn’t
matter whether you first use a component of the natural transforma-
tion to bridge the gap between objects, and then jump to its neighbor
using the functor; or the other way around. The two directions are or-
thogonal. A natural transformation moves you left and right, and the
functors move you up and down or back and forth — so to speak. You
can visualize the image of a functor as a sheet in the target category.
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A natural transformation maps one such sheet corresponding to F, to
another, corresponding to G.

We’ve seen examples of this orthogonality in Haskell. There the action
of a functor modifies the content of a container without changing its
shape, while a natural transformation repackages the untouched con-
tents into a different container. The order of these operations doesn’t
matter.

We’ve seen the cones in the definition of a limit replaced by natural
transformations. Naturality ensures that the sides of every cone com-
mute. Still, a limit is defined in terms of mappings between cones. These
mappings must also satisfy commutativity conditions. (For instance, the
triangles in the definition of the product must commute.)

These conditions, too, may be replaced by naturality. You may recall
that the universal cone, or the limit, is defined as a natural transforma-
tion between the (contravariant) hom-functor:

F::¢— C(c,LimD)

and the (also contravariant) functor that maps objects in C to cones,
which themselves are natural transformations:

G :: ¢ > Nat(A., D)
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Here, A, is the constant functor, and D is the functor that defines the
diagram in C. Both functors F and G have well defined actions on mor-
phisms in C. It so happens that this particular natural transformation
between F and G is an isomorphism.

Natural Isomorphisms

A natural isomorphism — which is a natural transformation whose ev-
ery component is reversible — is category theory’s way of saying that
“two things are the same” A component of such a transformation must
be an isomorphism between objects — a morphism that has the inverse.
If you visualize functor images as sheets, a natural isomorphism is a
one-to-one invertible mapping between those sheets.

Hom-Sets

But what are morphisms? They do have more structure than objects:
unlike objects, morphisms have two ends. But if you fix the source and
the target objects, the morphisms between the two form a boring set
(at least for locally small categories). We can give elements of this set
names like f or g, to distinguish one from another — but what is it,
really, that makes them different?

The essential difference between morphisms in a given hom-set lies
in the way they compose with other morphisms (from abutting hom-
sets). If there is a morphism h whose composition (either pre- or post-)
with f is different than that with g, for instance:

hof#hog
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then we can directly “observe” the difference between f and g. But even
if the difference is not directly observable, we might use functors to
zoom in on the hom-set. A functor F may map the two morphisms to
distinct morphisms:
Ff+Fg
in a richer category, where the abutting hom-sets provide more resolu-
tion, e.g.,
h"oFf+h oFg

where h’ is not in the image of F.

Hom-Set Isomorphisms

A lot of categorical constructions rely on isomorphisms between hom-
sets. But since hom-sets are just sets, a plain isomorphism between them
doesn’t tell you much. For finite sets, an isomorphism just says that they
have the same number of elements. If the sets are infinite, their cardi-
nality must be the same. But any meaningful isomorphism of hom-sets
must take into account composition. And composition involves more
than one hom-set. We need to define isomorphisms that span whole
collections of hom-sets, and we need to impose some compatibility con-
ditions that interoperate with composition. And a natural isomorphism
fits the bill exactly.

But what’s a natural isomorphism of hom-sets? Naturality is a prop-
erty of mappings between functors, not sets. So we are really talk-
ing about a natural isomorphism between hom-set-valued functors.
These functors are more than just set-valued functors. Their action on
morphisms is induced by the appropriate hom-functors. Morphisms
are canonically mapped by hom-functors using either pre- or post-
composition (depending on the covariance of the functor).
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The Yoneda embedding is one example of such an isomorphism. It
maps hom-sets in C to hom-sets in the functor category; and it’s natural.
One functor in the Yoneda embedding is the hom-functor in C and the
other maps objects to sets of natural transformations between hom-sets.

The definition of a limit is also a natural isomorphism between hom-
sets (the second one, again, in the functor category):

C(c,LimD) = Nat(A., D)

It turns out that our construction of an exponential object, or that of a
free monoid, can also be rewritten as a natural isomorphism between
hom-sets.

This is no coincidence — we’ll see next that these are just different
examples of adjunctions, which are defined as natural isomorphisms of
hom-sets.

Asymmetry of Hom-Sets

There is one more observation that will help us understand adjunctions.
Hom-sets are, in general, not symmetric. A hom-set C(a, b) is often very
different from the hom-set C(b,a). The ultimate demonstration of this
asymmetry is a partial order viewed as a category. In a partial order, a
morphism from a to b exists if and only if a is less than or equal to b. If a
and b are different, then there can be no morphism going the other way,
from b to a. So if the hom-set C(a, b) is non-empty, which in this case
means it’s a singleton set, then C(b, a) must be empty, unless a = b. The
arrows in this category have a definite flow in one direction.

A preorder, which is based on a relation that’s not necessarily an-
tisymmetric, is also “mostly” directional, except for occasional cycles.
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It’s convenient to think of an arbitrary category as a generalization of
a preorder.

A preorder is a thin category — all hom-sets are either singletons or
empty. We can visualize a general category as a “thick” preorder.

Challenges

1. Consider some degenerate cases of a naturality condition and
draw the appropriate diagrams. For instance, what happens if
either functor F or G map both objects a and b (the ends of
f :: a > b) to the same object, e.g., Fa = Fb or Ga = Gb? (Notice
that you get a cone or a co-cone this way.) Then consider cases
where either Fa = Ga or Fb = Gb. Finally, what if you start with
a morphism that loops on itself — f :: a — a?
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Adjunctions

N MATHEMATICS WE HAVE various ways of saying that one thing is like

another. The strictest is equality. Two things are equal if there is no
way to distinguish one from another. One can be substituted for the
other in every imaginable context. For instance, did you notice that we
used equality of morphisms every time we talked about commuting dia-
grams? That’s because morphisms form a set (hom-set) and set elements
can be compared for equality.

But equality is often too strong. There are many examples of things
being the same for all intents and purposes, without actually being
equal. For instance, the pair type (Bool, Char) is not strictly equal to
(Char, Bool), but we understand that they contain the same informa-
tion. This concept is best captured by an isomorphism between two types
— a morphism that’s invertible. Since it’s a morphism, it preserves the
structure; and being “iso” means that it’s part of a round trip that lands
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you in the same spot, no matter on which side you start. In the case of
pairs, this isomorphism is called swap:

swap :: (a,b) -> (b,a)
swap (a,b) = (b,a)

swap happens to be its own inverse.

Adjunction and Unit/Counit Pair

When we talk about categories being isomorphic, we express this in
terms of mappings between categories, a.k.a. functors. We would like
to be able to say that two categories C and D are isomorphic if there
exists a functor R (“right”) from C to D, which is invertible. In other
words, there exists another functor L (“left”) from D back to C which,
when composed with R, is equal to the identity functor I. There are two
possible compositions, Re L and L R; and two possible identity functors:
one in C and another in D.

But here’s the tricky part: What does it mean for two functors to be
equal? What do we mean by this equality:

ReL=1I
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or this one:
L o R = IC

It would be reasonable to define functor equality in terms of equality
of objects. Two functors, when acting on equal objects, should produce
equal objects. But we don’t, in general, have the notion of object equality
in an arbitrary category. It’s just not part of the definition. (Going deeper
into this rabbit hole of “what equality really is,” we would end up in
Homotopy Type Theory.)

You might argue that functors are morphisms in the category of
categories, so they should be equality-comparable. And indeed, as long
as we are talking about small categories, where objects form a set, we
can indeed use the equality of elements of a set to equality-compare
objects.

But, remember, Cat is really a 2-category. Hom-sets in a 2-category
have additional structure — there are 2-morphisms acting between 1-
morphisms. In Cat, 1-morphisms are functors, and 2-morphisms are
natural transformations. So it’s more natural (can’t avoid this pun!) to
consider natural isomorphisms as substitutes for equality when talking
about functors.

So, instead of isomorphism of categories, it makes sense to consider
amore general notion of equivalence. Two categories C and D are equiv-
alent if we can find two functors going back and forth between them,
whose composition (either way) is naturally isomorphic to the identity
functor. In other words, there is a two-way natural transformation be-
tween the composition R » L and the identity functor I, and another
between L o R and the identity functor I¢.

Adjunction is even weaker than equivalence, because it doesn’t re-
quire that the composition of the two functors be isomorphic to the
identity functor. Instead it stipulates the existence of a one way nat-
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ural transformation from Ip to R~ L, and another from L - R to I-. Here
are the signatures of these two natural transformations:

nilp—ReL
e LeR—I¢

n is called the unit, and ¢ the counit of the adjunction.
Notice the asymmetry between these two definitions. In general, we
don’t have the two remaining mappings:

ReL— Iy not necessarily

Ic—>L-R not necessarily

Because of this asymmetry, the functor L is called the left adjoint to the
functor R, while the functor R is the right adjoint to L. (Of course, left
and right make sense only if you draw your diagrams one particular
way.)

The compact notation for the adjunction is:

L—+R

To better understand the adjunction, let’s analyze the unit and the
counit in more detail.
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Let’s start with the unit. It’s a natural transformation, so it’s a family of
morphisms. Given an object d in D, the component of 1 is a morphism
between Id, which is equal to d, and (R - L)d; which, in the picture, is
called d’:

ha s d - (ReL)d

Notice that the composition R o L is an endofunctor in D.

This equation tells us that we can pick any object d in D as our
starting point, and use the round trip functor R o L to pick our target
object d’. Then we shoot an arrow — the morphism 7; — to our target.

By the same token, the component of the counit & can be described as:
& (LeR)c—c

It tells us that we can pick any object ¢ in C as our target, and use the
round trip functor L « R to pick the source ¢’ = (L - R)c. Then we shoot
the arrow — the morphism ¢, — from the source to the target.

Another way of looking at unit and counit is that unit lets us in-
troduce the composition R o L anywhere we could insert an identity
functor on D; and counit lets us eliminate the composition L« R, replac-
ing it with the identity on C. That leads to some “obvious” consistency
conditions, which make sure that introduction followed by elimination
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doesn’t change anything:
L=Loly—LoRoeL—>IcoL=L
R=Ip°R—>ReLeR— Relc =R

These are called triangular identities because they make the following
diagrams commute:

Lo oR
L — S [oRoL R—L" S ReLoR

These are diagrams in the functor category: the arrows are natural trans-
formations, and their composition is the horizontal composition of nat-
ural transformations. In components, these identities become:

erg ° Lng = idpq
Re; o np, = idp,

We often see unit and counit in Haskell under different names. Unit is
known as return (or pure, in the definition of Applicative):

return :: d -> m d

and counit as extract:

extract :: wc -> ¢

Here, m is the (endo-) functor corresponding to Re L, and w is the (endo-)
functor corresponding to L - R. As we’ll see later, they are part of the
definition of a monad and a comonad, respectively.
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If you think of an endofunctor as a container, the unit (or return)
is a polymorphic function that creates a default box around a value of
arbitrary type. The counit (or extract) does the reverse: it retrieves or
produces a single value from a container.

We'll see later that every pair of adjoint functors defines a monad
and a comonad. Conversely, every monad or comonad may be factorized
into a pair of adjoint functors — this factorization is not unique, though.

In Haskell, we use monads a lot, but only rarely factorize them into
pairs of adjoint functors, primarily because those functors would nor-
mally take us out of Hask.

We can however define adjunctions of endofunctors in Haskell.
Here’s part of the definition taken from Data.Functor.Adjunction:

class (Functor f, Representable u) =>
Adjunction f u | f => u, u -> f where
unit :: a -> u (f a)
counit :: f (ua) -> a

This definition requires some explanation. First of all, it describes a
multi-parameter type class — the two parameters being f and u. It es-
tablishes a relation called Adjunction between these two type construc-
tors.

Additional conditions, after the vertical bar, specify functional de-
pendencies. For instance, f -> u means that u is determined by f (the
relation between f and u is a function, here on type constructors). Con-
versely,u -> f means that, if we know u, then f is uniquely determined.

I'll explain in a moment why, in Haskell, we can impose the condi-
tion that the right adjoint u be a representable functor.
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Adjunctions and Hom-Sets

There is an equivalent definition of the adjunction in terms of natu-
ral isomorphisms of hom-sets. This definition ties nicely with universal
constructions we’ve been studying so far. Every time you hear the state-
ment that there is some unique morphism, which factorizes some con-
struction, you should think of it as a mapping of some set to a hom-set.
That’s the meaning of “picking a unique morphism.”

Furthermore, factorization can be often described in terms of natural
transformations. Factorization involves commuting diagrams — some
morphism being equal to a composition of two morphisms (factors). A
natural transformation maps morphisms to commuting diagrams. So,
in a universal construction, we go from a morphism to a commuting
diagram, and then to a unique morphism. We end up with a mapping
from morphism to morphism, or from one hom-set to another (usually
in different categories). If this mapping is invertible, and if it can be
naturally extended across all hom-sets, we have an adjunction.

The main difference between universal constructions and adjunc-
tions is that the latter are defined globally — for all hom-sets. For in-
stance, using a universal construction you can define a product of two
select objects, even if it doesn’t exist for any other pair of objects in that
category. As we’ll see soon, if the product of any pair of objects exists
in a category, it can be also defined through an adjunction.
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Here’s the alternative definition of the adjunction using hom-sets. As
before, we have two functors L :: D — C and R :: C — D. We pick two
arbitrary objects: the source object d in D, and the target object ¢ in C.
We can map the source object d to C using L. Now we have two objects
in C, Ld and c. They define a hom-set:

C(Ld,¢)

Similarly, we can map the target object ¢ using R. Now we have two
objects in D, d and Rc. They, too, define a hom set:

D(d, Re)
We say that L is left adjoint to R iff there is an isomorphism of hom sets:
C(Ld,c) =D(d, Rc)

that is natural both in d and c. Naturality means that the source d can be
varied smoothly across D; and the target ¢, across C. More precisely, we
have a natural transformation ¢ between the following two (covariant)
functors from C to Set. Here’s the action of these functors on objects:

¢ — C(Ld,c)
¢ — D(d,Re)
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The other natural transformation, ¥, acts between the following (con-
travariant) functors:

d - C(Ld,c)
d - D(d,Rc)

Both natural transformations must be invertible.

It’s easy to show that the two definitions of the adjunction are equiv-
alent. For instance, let’s derive the unit transformation starting from the
isomorphism of hom-sets:

C(Ld,c) = D(d, Re)

Since this isomorphism works for any object ¢, it must also work for
c=Ld:
C(Ld,Ld) =D(d, (R~ L)d)

We know that the left hand side must contain at least one morphism,
the identity. The natural transformation will map this morphism to an
element of D(d, (R L)d) or, inserting the identity functor I, a morphism
in:

D(Id, (R + L)d)

We get a family of morphisms parameterized by d. They form a natural
transformation between the functor I and the functor R - L (the natu-
rality condition is easy to verify). This is exactly our unit, 7.

Conversely, starting from the existence of the unit and counit, we
can define the transformations between hom-sets. For instance, let’s
pick an arbitrary morphism f in the hom-set C(Ld, ¢). We want to define
a ¢ that, acting on f, produces a morphism in D(d, Rc).

There isn’t really much choice. One thing we can try is to lift f using
R. That will produce a morphism Rf from R(Ld) to Rc — a morphism
that’s an element of D((R » L)d, Rc).
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What we need for a component of ¢, is a morphism from d to Rc.
That’s not a problem, since we can use a component of ; to get from d
to (R L)d. We get:

@f =Rf °ng
The other direction is analogous, and so is the derivation of /.

Going back to the Haskell definition of Adjunction, the natural
transformations ¢ and i are replaced by polymorphic (in a and b) func-
tions leftAdjunct and rightAdjunct, respectively. The functors L and
R are called f and u:

class (Functor f, Representable u) =>
Adjunction f u | f => u, u -> f where
leftAdjunct :: (f a =>b) => (a => u b)
rightAdjunct :: (a => u b) => (f a => b)

The equivalence between the unit/counit formulation and the
leftAdjunct/rightAdjunct formulation is witnessed by these map-

pings:

unit leftAdjunct id
rightAdjunct id

fmap f . unit

counit
leftAdjunct f
rightAdjunct f = counit . fmap f

It’s very instructive to follow the translation from the categorical de-
scription of the adjunction to Haskell code. I highly encourage this as
an exercise.

We are now ready to explain why, in Haskell, the right adjoint is
automatically a representable functor. The reason for this is that, to the
first approximation, we can treat the category of Haskell types as the
category of sets.
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When the right category D is Set, the right adjoint R is a functor
from C to Set. Such a functor is representable if we can find an object
rep in C such that the hom-functor C(rep, _) is naturally isomorphic to
R. It turns out that, if R is the right adjoint of some functor L from Set
to C, such an object always exists — it’s the image of the singleton set
() under L:

rep = L()

Indeed, the adjunction tells us that the following two hom-sets are nat-
urally isomorphic:

C(L(),c) = Set((), Re)

For a given c, the right hand side is the set of functions from the sin-
gleton set () to Rc. We've seen earlier that each such function picks one
element from the set R c. The set of such functions is isomorphic to the
set Rc. So we have:

C(L(),—) =R

which shows that R is indeed representable.

Product from Adjunction

We have previously introduced several concepts using universal con-
structions. Many of those concepts, when defined globally, are easier
to express using adjunctions. The simplest non-trivial example is that
of the product. The gist of the universal construction of the product is
the ability to factorize any product-like candidate through the universal
product.

More precisely, the product of two objects a and b is the object (axb)
(or (a, b) in the Haskell notation) equipped with two morphisms fst
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and snd such that, for any other candidate ¢ equipped with two mor-
phisms p :: ¢ - aand q :: ¢ — b, there exists a unique morphism
m :: ¢ — (a,b) that factorizes p and g through fst and snd.

As we’ve seen earlier, in Haskell, we can implement a factorizer
that generates this morphism from the two projections:

factorizer :: (c => a) => (¢ => b) -> (¢ -> (a, b))
factorizer p q = \x => (p x, q x)

It’s easy to verify that the factorization conditions hold:

fst . factorizer p q

1]
o

snd . factorizer p g

]
Ke]

We have a mapping that takes a pair of morphisms p and q and produces
another morphismm = factorizer p q.

How can we translate this into a mapping between two hom-sets
that we need to define an adjunction? The trick is to go outside of Hask
and treat the pair of morphisms as a single morphism in the product
category.

Let me remind you what a product category is. Take two arbitrary
categories C and D. The objects in the product category C x D are pairs
of objects, one from C and one from D. The morphisms are pairs of
morphisms, one from C and one from D.

To define a product in some category C, we should start with the
product category CxC. Pairs of morphism from C are single morphisms
in the product category C x C.
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It might be a little confusing at first that we are using a product cate-
gory to define a product. These are, however, very different products.
We don’t need a universal construction to define a product category.
All we need is the notion of a pair of objects and a pair of morphisms.

However, a pair of objects from C is not an object in C. It’s an ob-
ject in a different category, C x C. We can write the pair formally as
(a, b), where a and b are objects of C. The universal construction, on the
other hand, is necessary in order to define the object a x b (or (a, b)
in Haskell), which is an object in the same category C. This object is
supposed to represent the pair (a, b) in a way specified by the univer-
sal construction. It doesn’t always exist and, even if it exists for some,
might not exist for other pairs of objects in C.

Let’s now look at the factorizer as a mapping of hom-sets. The
first hom-set is in the product category C x C, and the second is in C. A
general morphism in C x C would be a pair of morphisms (f, g):

fucd —a

g::c”—)b

with ¢” potentially different from ¢’. But to define a product, we are
interested in a special morphism in C x C, the pair p and q that share
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the same source object c. That’s okay: In the definition of an adjuncion,
the source of the left hom-set is not an arbitrary object — it’s the result
of the left functor L acting on some object from the right category. The
functor that fits the bill is easy to guess — it’s the diagonal functor A
from C to C x C, whose action on objects is:

Ac={cc)
The left-hand side hom-set in our adjunction should thus be:
(CxC)(Ac,{a,b))

It’s a hom-set in the product category. Its elements are pairs of mor-
phisms that we recognize as the arguments to our factorizer:

(c>a)—>(c—>Db)..

The right-hand side hom-set lives in C, and it goes between the source
object ¢ and the result of some functor R acting on the target object
in C x C. That’s the functor that maps the pair (a,b) to our product
object, a x b. We recognize this element of the hom-set as the result of
the factorizer:

= (¢ = (ab))
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We still don’t have a full adjunction. For that we first need our
factorizer to be invertible — we are building an isomorphism between
hom-sets. The inverse of the factorizer should start from a morphism
m — a morphism from some object c to the product object a x b. In other
words, m should be an element of:

C(c,axb)

The inverse factorizer should map m to a morphism (p, g) in C x C that
goes from {c, ¢) to (a, b); in other words, a morphism that’s an element
of:

(CxC)(Ac,{a,b))

If that mapping exists, we conclude that there exists the right adjoint to
the diagonal functor. That functor defines a product.

In Haskell, we can always construct the inverse of the factorizer
by composing m with, respectively, fst and snd.

p=fst.m
g=snd . m

To complete the proof of the equivalence of the two ways of defining
a product we also need to show that the mapping between hom-sets is
natural in a, b, and c. I will leave this as an exercise for the dedicated
reader.

To summarize what we have done: A categorical product may be
defined globally as the right adjoint of the diagonal functor:

(CxC)(Ac,{a,b)) =C(c,axb)

Here, axb is the result of the action of our right adjoint functor Product
on the pair (a,b). Notice that any functor from C x C is a bifunctor,
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so Product is a bifunctor. In Haskell, the Product bifunctor is written
simply as (,). You can apply it to two types and get their product type,
for instance:

(,) Int Bool ~ (Int, Bool)

Exponential from Adjunction

The exponential b%, or the function object a = b, can be defined using
a universal construction. This construction, if it exists for all pairs of
objects, can be seen as an adjunction. Again, the trick is to concentrate
on the statement:

For any other object z with a morphism g :: zxa — b there
is a unique morphism h :: z > (a = b)

This statement establishes a mapping between hom-sets.

In this case, we are dealing with objects in the same category, so the
two adjoint functors are endofunctors. The left (endo-)functor L, when
acting on object z, produces z x a. It’s a functor that corresponds to
taking a product with some fixed a.

The right (endo-)functor R, when acting on b produces the function
objecta = b (or b%). Again, a is fixed. The adjunction between these two
functors is often written as:

—xa (=)

The mapping of hom-sets that underlies this adjunction is best seen by
redrawing the diagram that we used in the universal construction.
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ZXA  g—
3 |

b .wb.a-éb

Notice that the eval morphism' is nothing else but the counit of this
adjunction:
(a=b)xa—>b

where:

(a=Db)xa=(L-R)b

I have previously mentioned that a universal construction defines a
unique object, up to isomorphism. That’s why we have “the” product
and “the” exponential. This property translates to adjunctions as well:
if a functor has an adjoint, this adjoint is unique up to isomorphism.

Challenges

1. Derive the naturality square for ¢, the transformation between
the two (contravariant) functors:

a — C(La,b)
a — D(a, Rb)

2. Derive the counit ¢ starting from the hom-sets isomorphism in
the second definition of the adjunction.

ISee ch.9 on universal construction.
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. Complete the proof of equivalence of the two definitions of the
adjunction.

. Show that the coproduct can be defined by an adjunction. Start
with the definition of the factorizer for a coproduct.

. Show that the coproduct is the left adjoint of the diagonal functor.

6. Define the adjunction between a product and a function object in

Haskell.

280



Free/Forgetful Adjunctions

REE CONSTRUCTIONS ARE a powerful application of adjunctions. A

free functor is defined as the left adjoint to a forgetful functor. A
forgetful functor is usually a pretty simple functor that forgets some
structure. For instance, lots of interesting categories are built on top of
sets. But categorical objects, which abstract those sets, have no internal
structure — they have no elements. Still, those objects often carry the
memory of sets, in the sense that there is a mapping — a functor — from
a given category C to Set. A set corresponding to some object in C is
called its underlying set.

Monoids are such objects that have underlying sets — sets of ele-
ments. There is a forgetful functor U from the category of monoids Mon
to the category of sets, which maps monoids to their underlying sets. It
also maps monoid morphisms (homomorphisms) to functions between
sets.
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I like to think of Mon as having split personality. On the one hand,
it’s a bunch of sets with multiplication and unit elements. On the other
hand, it’s a category with featureless objects whose only structure is
encoded in morphisms that go between them. Every set-function that
preserves multiplication and unit gives rise to a morphism in Mon.

Things to keep in mind:

 There may be many monoids that map to the same set, and
« There are fewer (or at most as many as) monoid morphisms than
there are functions between their underlying sets.

The functor F that’s the left adjoint to the forgetful functor U is the
free functor that builds free monoids from their generator sets. The ad-
junction follows from the free monoid universal construction we’ve dis-
cussed before.!

Monoids m; and m, have the same underlying set. There are more functions between the under-
lying sets of m, and mjy than there are morphisms between them.

1See ch.13 on free monoids.
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In terms of hom-sets, we can write this adjunction as:
Mon(Fx,m) = Set(x,Um)
This (natural in x and m) isomorphism tells us that:

« For every monoid homomorphism between the free monoid Fx
generated by x and an arbitrary monoid m there is a unique func-
tion that embeds the set of generators x in the underlying set of
m. It’s a function in Set(x,Um).

« For every function that embeds x in the underlying set of some
m there is a unique monoid morphism between the free monoid
generated by x and the monoid m. (This is the morphism we called
h in our universal construction.)

The intuition is that Fx is the “maximum” monoid that can be built on
the basis of x. If we could look inside monoids, we would see that any
morphism that belongs to Mon(Fx, m) embeds this free monoid in some
other monoid m. It does it by possibly identifying some elements. In par-
ticular, it embeds the generators of Fx (i.e., the elements of x) in m. The
adjunction shows that the embedding of x, which is given by a func-
tion from Set(x,Um) on the right, uniquely determines the embedding
of monoids on the left, and vice versa.
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In Haskell, the list data structure is a free monoid (with some
caveats: see Dan Doel’s blog post?). A list type [a] is a free monoid
with the type a representing the set of generators. For instance, the type
[Char] contains the unit element — the empty list [] — and the single-
tons like ['a'], ['b'] — the generators of the free monoid. The rest is
generated by applying the “product.” Here, the product of two lists sim-
ply appends one to another. Appending is associative and unital (that
is, there is a neutral element — here, the empty list). A free monoid gen-
erated by Char is nothing but the set of all strings of characters from
Char. It’s called String in Haskell:

type String = [Char]

(type defines a type synonym — a different name for an existing type).

Another interesting example is a free monoid built from just one
generator. It’s the type of the list of units, [ () ].Its elements are [1, [ ()],
[, O, etc. Every such list can be described by one natural number
— its length. There is no more information encoded in the list of units.
Appending two such lists produces a new list whose length is the sum
of the lengths of its constituents. It’s easy to see that the type [ ()] is
isomorphic to the additive monoid of natural numbers (with zero). Here
are the two functions that are the inverse of each other, witnessing this
isomorphism:

toNat :: [()] -> Int
toNat = length

thtp: //comonad.com/reader/2015/free-monoids-in-haskell/
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toLst :: Int -> [()]
toLst n = replicate n ()

For simplicity I used the type Int rather than Natural, but the idea is
the same. The function replicate creates a list of length n pre-filled
with a given value — here, the unit.

Some Intuitions

What follows are some hand-waving arguments. Those kind of argu-
ments are far from rigorous, but they help in forming intuitions.

To get some intuition about the free/forgetful adjunctions it helps to
keep in mind that functors and functions are lossy in nature. Functors
may collapse multiple objects and morphisms, functions may bunch to-
gether multiple elements of a set. Also, their image may cover only part
of their codomain.

An “average” hom-set in Set will contain a whole spectrum of func-
tions starting with the ones that are least lossy (e.g., injections or, pos-
sibly, isomorphisms) and ending with constant functions that collapse
the whole domain to a single element (if there is one).

I tend to think of morphisms in an arbitrary category as being lossy
too. It’s just a mental model, but it’s a useful one, especially when think-
ing of adjunctions — in particular those in which one of the categories
is Set.

Formally, we can only speak of morphisms that are invertible (iso-
morphisms) or non-invertible. It’s that latter kind that may be thought
of as lossy. There is also a notion of mono- and epi- morphisms that
generalize the idea of injective (non-collapsing) and surjective (cover-
ing the whole codomain) functions, but it’s possible to have a morphism
that is both mono and epi, and which is still non-invertible.
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In the Free - Forgetful adjunction, we have the more constrained
category C on the left, and a less constrained category D on the right.
Morphisms in C are “fewer” because they have to preserve some addi-
tional structure. In the case of Mon, they have to preserve multiplication
and unit. Morphisms in D don’t have to preserve as much structure, so
there are “more” of them.

When we apply a forgetful functor U to an object ¢ in C, we think
of it as revealing the “internal structure” of c. In fact, if D is Set we
think of U as defining the internal structure of ¢ — its underlying set.
(In an arbitrary category, we can’t talk about the internals of an object
other than through its connections to other objects, but here we are just
hand-waving.)

If we map two objects ¢’ and c using U, we expect that, in general, the
mapping of the hom-set C(¢’, ¢) will cover only a subset of D(Uc¢’,Uc).
That’s because morphisms in C(c¢’,c) have to preserve the additional
structure, whereas the ones in D(Uc’,Uc) don’t.

cé =>o gﬁ

But since an adjunction is defined as an isomorphism of particular hom-
sets, we have to be very picky with our selection of ¢’. In the adjunction,
¢’ is picked not from just anywhere in C, but from the (presumably
smaller) image of the free functor F:

C(Fd,c) = D(d,Uc)
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The image of F must therefore consist of objects that have lots of mor-
phisms going to an arbitrary c. In fact, there has to be as many structure-
preserving morphisms from Fd to c as there are non-structure preserv-
ing morphisms from d to Uc. It means that the image of F must con-
sist of essentially structure-free objects (so that there is no structure
to preserve by morphisms). Such “structure-free” objects are called free
objects.

In the monoid example, a free monoid has no structure other than
what’s generated by unit and associativity laws. Other than that, all
multiplications produce brand new elements.

In a free monoid, 2 %3 is not 6 — it’s a new element |2, 3|. Since there
is no identification of [2,3] and 6, a morphism from this free monoid
to any other monoid m is allowed to map them separately. But it’s also
okay for it to map both [2,3] and 6 (their product) to the same element
of m. Or to identify [2,3]| and 5 (their sum) in an additive monoid, and
so on. Different identifications give you different monoids.

This leads to another interesting intuition: Free monoids, instead
of performing the monoidal operation, accumulate the arguments that
were passed to it. Instead of multiplying 2 and 3 they remember 2 and
3 in a list. The advantage of this scheme is that we don’t have to specify
what monoidal operation we will use. We can keep accumulating argu-
ments, and only at the end apply an operator to the result. And it’s then
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that we can chose what operator to apply. We can add the numbers, or
multiply them, or perform addition modulo 2, and so on. A free monoid
separates the creation of an expression from its evaluation. We’ll see
this idea again when we talk about algebras.

This intuition generalizes to other, more elaborate free construc-
tions. For instance, we can accumulate whole expression trees before
evaluating them. The advantage of this approach is that we can trans-
form such trees to make the evaluation faster or less memory consum-
ing. This is, for instance, done in implementing matrix calculus, where
eager evaluation would lead to lots of allocations of temporary arrays
to store intermediate results.

Challenges

1. Consider a free monoid built from a singleton set as its generator.
Show that there is a one-to-one correspondence between mor-
phisms from this free monoid to any monoid m, and functions
from the singleton set to the underlying set of m.
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Monads: Programmer’s Definition

ROGRAMMERS HAVE DEVELOPED a whole mythology around monads.

It’s supposed to be one of the most abstract and difficult concepts in
programming. There are people who “get it” and those who don’t. For
many, the moment when they understand the concept of the monad
is like a mystical experience. The monad abstracts the essence of so
many diverse constructions that we simply don’t have a good analogy
for it in everyday life. We are reduced to groping in the dark, like those
blind men touching different parts of the elephant end exclaiming tri-
umphantly: “It’s a rope,” “It’s a tree trunk,” or “It’s a burrito!”

Let me set the record straight: The whole mysticism around the
monad is the result of a misunderstanding. The monad is a very sim-
ple concept. It’s the diversity of applications of the monad that causes
the confusion.

As part of research for this post I looked up duct tape (a.k.a., duck
tape) and its applications. Here’s a little sample of things that you can
do with it:
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« sealing ducts

« fixing CO, scrubbers on board Apollo 13
» wart treatment

« fixing Apple’s iPhone 4 dropped call issue
» making a prom dress

« building a suspension bridge

Now imagine that you didn’t know what duct tape was and you were
trying to figure it out based on this list. Good luck!

So I'd like to add one more item to the collection of “the monad is
like..” clichés: The monad is like duct tape. Its applications are widely
diverse, but its principle is very simple: it glues things together. More
precisely, it composes things.

This partially explains the difficulties a lot of programmers, espe-
cially those coming from the imperative background, have with under-
standing the monad. The problem is that we are not used to thinking
of programming in terms of function composition. This is understand-
able. We often give names to intermediate values rather than pass them
directly from function to function. We also inline short segments of
glue code rather than abstract them into helper functions. Here’s an
imperative-style implementation of the vector-length function in C:

double vlen(double * v) {
double d = 0.0;
int n;
for (n = 0; n < 3; ++n)
d += v[n] * v[n];
return sqrt(d);
3

Compare this with the (stylized) Haskell version that makes function
composition explicit:
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vlen = sqrt . sum . fmap (flip (*) 2)

(Here, to make things even more cryptic, I partially applied the expo-
nentiation operator (*) by setting its second argument to 2.)

I’'m not arguing that Haskell’s point-free style is always better, just
that function composition is at the bottom of everything we do in pro-
gramming. And even though we are effectively composing functions,
Haskell does go to great lengths to provide imperative-style syntax
called the do notation for monadic composition. We’ll see its use later.
But first, let me explain why we need monadic composition in the first
place.

The Kleisli Category

We have previously arrived at the writer monad by embellishing regular
functions. The particular embellishment was done by pairing their re-
turn values with strings or, more generally, with elements of a monoid.
We can now recognize that such an embellishment is a functor:

newtype Writer w a = Writer (a, w)

instance Functor (Writer w) where
fmap f (Writer (a, w)) = Writer (f a, w)

We have subsequently found a way of composing embellished func-
tions, or Kleisli arrows, which are functions of the form:

a -> Writer w b

It was inside the composition that we implemented the accumulation of

the log.
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We are now ready for a more general definition of the Kleisli cate-
gory. We start with a category C and an endofunctor m. The correspond-
ing Kleisli category K has the same objects as C, but its morphisms are
different. A morphism between two objects a and b in K is implemented
as a morphism:

a—>mb

in the original category C. It’s important to keep in mind that we treat
a Kleisli arrow in K as a morphism between a and b, and not between a
and m b.

In our example, m was specialized to Writer w, for some fixed
monoid w.

Kleisli arrows form a category only if we can define proper compo-
sition for them. If there is a composition, which is associative and has
an identity arrow for every object, then the functor m is called a monad,
and the resulting category is called the Kleisli category.

In Haskell, Kleisli composition is defined using the fish operator >=>,
and the identity arrow is a polymorphic function called return. Here’s
the definition of a monad using Kleisli composition:

class Monad m where
>=>) :: (@a=>mb) >(Mb->mc) ->(a->mc)
return :: a -=>m a

Keep in mind that there are many equivalent ways of defining a monad,
and that this is not the primary one in the Haskell ecosystem. I like it
for its conceptual simplicity and the intuition it provides, but there are
other definitions that are more convenient when programming. We’ll
talk about them momentarily.

In this formulation, monad laws are very easy to express. They can-
not be enforced in Haskell, but they can be used for equational rea-
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soning. They are simply the standard composition laws for the Kleisli
category:

(f >=>g) >=> h = f >=> (g >> h)
return >=> f = f
f >=> return = f

This kind of a definition also expresses what a monad really is: it’s a
way of composing embellished functions. It’s not about side effects or
state. It’s about composition. As we’ll see later, embellished functions
may be used to express a variety of effects or state, but that’s not what
the monad is for. The monad is the sticky duct tape that ties one end of
an embellished function to the other end of an embellished function.

Going back to our Writer example: The logging functions (the
Kleisli arrows for the Writer functor) form a category because Writer
is a monad:

instance Monoid w => Monad (Writer w) where
f>=>g=1\a->
let Writer (b, s) = f a
Writer (c, s') = gb
in Writer (c, s ‘mappend‘ s')
return a = Writer (a, mempty)

Monad laws for Writer w are satisfied as long as monoid laws for w are
satisfied (they can’t be enforced in Haskell either).

There’s a useful Kleisli arrow defined for the Writer monad called
tell. It’s sole purpose is to add its argument to the log:

tell :: w => Writer w ()
tell s = Writer ((), s)

We’ll use it later as a building block for other monadic functions.
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Fish Anatomy

When implementing the fish operator for different monads you quickly
realize that a lot of code is repeated and can be easily factored out. To
begin with, the Kleisli composition of two functions must return a func-
tion, so its implementation may as well start with a lambda taking an
argument of type a:

>=>) :: (@a=>mb) > (b ->mc) > (a->mc)
f>>g=\a->...
The only thing we can do with this argument is to pass it to f:

f>>g=\a->1letmb=1Fa
in ...

At this point we have to produce the result of type m c, having at our
disposal an object of type m b and a functiong :: b -> m c. Let’s de-
fine a function that does that for us. This function is called bind and is
usually written in the form of an infix operator:

(>>=) ::ma->(@->mb) >mb

For every monad, instead of defining the fish operator, we may instead
define bind. In fact the standard Haskell definition of a monad uses bind:

class Monad m where
>>=) ::ma->@-=->mb) >mb
return :: a =>m a

Here’s the definition of bind for the Writer monad:
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(Writer (a, w)) >>= f = let Writer (b, w') = f a
in Writer (b, w ‘mappend‘ w')

It is indeed shorter than the definition of the fish operator.

It’s possible to further dissect bind, taking advantage of the fact that
m is a functor. We can use fmap to apply the function a -> m b to the
contents of m a. This will turn a into m b. The result of the application
is therefore of type m (m b). This is not exactly what we want — we
need the result of type m b — but we’re close. All we need is a function
that collapses or flattens the double application of m. Such a function is
called join:

join :: m (ma) ->m a

Using join, we can rewrite bind as:

ma >>= f = join (fmap f ma)

That leads us to the third option for defining a monad:

class Functor m => Monad m where
join :: m (ma) ->m a
return :: a -=> m a

Here we have explicitly requested that m be a Functor. We didn’t have
to do that in the previous two definitions of the monad. That’s because
any type constructor m that either supports the fish or bind operator
is automatically a functor. For instance, it’s possible to define fmap in
terms of bind and return:
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fmap f ma = ma >>= \a -> return (f a)

For completeness, here’s join for the Writer monad:

join :: Monoid w => Writer w (Writer w a) -> Writer w a
join (Writer ((Writer (a, w')), w)) = Writer (a, w ‘mappend‘ w')

The do Notation

One way of writing code using monads is to work with Kleisli arrows
— composing them using the fish operator. This mode of programming
is the generalization of the point-free style. Point-free code is compact
and often quite elegant. In general, though, it can be hard to under-
stand, bordering on cryptic. That’s why most programmers prefer to
give names to function arguments and intermediate values.

When dealing with monads it means favoring the bind operator over
the fish operator. Bind takes a monadic value and returns a monadic
value. The programmer may chose to give names to those values. But
that’s hardly an improvement. What we really want is to pretend that
we are dealing with regular values, not the monadic containers that en-
capsulate them. That’s how imperative code works — side effects, such
as updating a global log, are mostly hidden from view. And that’s what
the do notation emulates in Haskell.

You might be wondering then, why use monads at all? If we want
to make side effects invisible, why not stick to an imperative language?
The answer is that the monad gives us much better control over side
effects. For instance, the log in the Writer monad is passed from func-
tion to function and is never exposed globally. There is no possibility of
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garbling the log or creating a data race. Also, monadic code is clearly
demarcated and cordoned off from the rest of the program.

The do notation is just syntactic sugar for monadic composition. On
the surface, it looks a lot like imperative code, but it translates directly
to a sequence of binds and lambda expressions.

For instance, take the example we used previously to illustrate the
composition of Kleisli arrows in the Writer monad. Using our current
definitions, it could be rewritten as:

process :: String -> Writer String [String]
process = upCase >=> toWords

This function turns all characters in the input string to upper case and
splits it into words, all the while producing a log of its actions.
In the do notation it would look like this:
process s = do

upStr <- upCase s
toWords upStr

Here, upStr is just a String, even though upCase produces a Writer:
upCase :: String -> Writer String String
upCase s = Writer (map toUpper s, "upCase ")

This is because the do block is desugared by the compiler to:

process s =
upCase s >>= \upStr ->
toWords upStr

The monadic result of upCase is bound to a lambda that takes a String.
It’s the name of this string that shows up in the do block. When reading
the line:
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upStr <- upCase s

we say that upStr gets the result of upCase s.

The pseudo-imperative style is even more pronounced when we in-
line toWords. We replace it with the call to tell, which logs the string
"toWords ", followed by the call to return with the result of splitting
the string upStr using words. Notice that words is a regular function
working on strings.

process s = do
upStr <- upCase s
tell "toWords "
return (words upStr)

Here, each line in the do block introduces a new nested bind in the
desugared code:

process s =
upCase s >>= \upStr ->
tell "toWords " >>= \() ->
return (words upStr)

Notice that tell produces a unit value, so it doesn’t have to be passed
to the following lambda. Ignoring the contents of a monadic result (but
not its effect — here, the contribution to the log) is quite common, so
there is a special operator to replace bind in that case:

>>) ::ma->mb->mb
m>>k =m>>= (\_ -> k)

The actual desugaring of our code looks like this:
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process s =
upCase s >>= \upStr ->
tell "toWords " >>
return (words upStr)

In general, do blocks consist of lines (or sub-blocks) that either use the
left arrow to introduce new names that are then available in the rest of
the code, or are executed purely for side-effects. Bind operators are im-
plicit between the lines of code. Incidentally, it is possible, in Haskell, to
replace the formatting in the do blocks with braces and semicolons. This
provides the justification for describing the monad as a way of overload-
ing the semicolon.

Notice that the nesting of lambdas and bind operators when desug-
aring the do notation has the effect of influencing the execution of the
rest of the do block based on the result of each line. This property can be
used to introduce complex control structures, for instance to simulate
exceptions.

Interestingly, the equivalent of the do notation has found its appli-
cation in imperative languages, C++ in particular. I'm talking about re-
sumable functions or coroutines. It’s not a secret that C++ futures form
a monad!. It’s an example of the continuation monad, which we’ll dis-
cuss shortly. The problem with continuations is that they are very hard
to compose. In Haskell, we use the do notation to turn the spaghetti
of “my handler will call your handler” into something that looks very
much like sequential code. Resumable functions make the same trans-
formation possible in C++. And the same mechanism can be applied to
turn the spaghetti of nested loops? into list comprehensions or “gener-

1https://bartoszmilewski.com/2014/@2/26/c17—i—see—a—monad—in—your—
future/
thtps://bartoszmilewski.com/2®14/@4/21/getting—lazy—with—c/
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ators,” which are essentially the do notation for the list monad. With-
out the unifying abstraction of the monad, each of these problems is
typically addressed by providing custom extensions to the language. In
Haskell, this is all dealt with through libraries.
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Monads and Effects

OW THAT WE KNOw what the monad is for — it lets us compose em-

bellished functions — the really interesting question is why embel-
lished functions are so important in functional programming. We’ve
already seen one example, the Writer monad, where embellishment let
us create and accumulate a log across multiple function calls. A problem
that would otherwise be solved using impure functions (e.g., by access-
ing and modifying some global state) was solved with pure functions.

The Problem

Here is a short list of similar problems, copied from Eugenio Moggi’s
seminal paper!, all of which are traditionally solved by abandoning the
purity of functions.

« Partiality: Computations that may not terminate

1https://core.ac.uk/download/pdf/21173®11.pdf
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» Nondeterminism: Computations that may return many results
+ Side effects: Computations that access/modify state

— Read-only state, or the environment
— Write-only state, or a log
— Read/write state

« Exceptions: Partial functions that may fail

« Continuations: Ability to save state of the program and then re-
store it on demand

« Interactive Input

« Interactive Output

What really is mind blowing is that all these problems may be solved
using the same clever trick: turning to embellished functions. Of course,
the embellishment will be totally different in each case.

You have to realize that, at this stage, there is no requirement that
the embellishment be monadic. It’s only when we insist on composition
— being able to decompose a single embellished function into smaller
embellished functions — that we need a monad. Again, since each of the
embellishments is different, monadic composition will be implemented
differently, but the overall pattern is the same. It’s a very simple pattern:
composition that is associative and equipped with identity.

The next section is heavy on Haskell examples. Feel free to skim or
even skip it if you’re eager to get back to category theory or if you’re
already familiar with Haskell’s implementation of monads.

The Solution

First, let’s analyze the way we used the Writer monad. We started with
a pure function that performed a certain task — given arguments, it pro-
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duced a certain output. We replaced this function with another function
that embellished the original output by pairing it with a string. That was
our solution to the logging problem.

We couldn’t stop there because, in general, we don’t want to deal
with monolithic solutions. We needed to be able to decompose one log-
producing function into smaller log-producing functions. It’s the com-
position of those smaller functions that led us to the concept of a monad.

What’s really amazing is that the same pattern of embellishing the
function return types works for a large variety of problems that nor-
mally would require abandoning purity. Let’s go through our list and
identify the embellishment that applies to each problem in turn.

Partiality

We modify the return type of every function that may not terminate by
turning it into a “lifted” type — a type that contains all values of the
original type plus the special “bottom” value L. For instance, the Bool
type, as a set, would contain two elements: True and False. The lifted
Bool contains three elements. Functions that return the lifted Bool may
produce True or False, or execute forever.

The funny thing is that, in a lazy language like Haskell, a never-
ending function may actually return a value, and this value may be
passed to the next function. We call this special value the bottom. As
long as this value is not explicitly needed (for instance, to be pattern
matched, or produced as output), it may be passed around without
stalling the execution of the program. Because every Haskell function
may be potentially non-terminating, all types in Haskell are assumed to
be lifted. This is why we often talk about the category Hask of Haskell
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(lifted) types and functions rather than the simpler Set. It is not clear,
though, that Hask is a real category (see this Andrej Bauer post?).

Nondeterminism

If a function can return many different results, it may as well return
them all at once. Semantically, a non-deterministic function is equiva-
lent to a function that returns a list of results. This makes a lot of sense
in a lazy garbage-collected language. For instance, if all you need is one
value, you can just take the head of the list, and the tail will never be
evaluated. If you need a random value, use a random number generator
to pick the n-th element of the list. Laziness even allows you to return
an infinite list of results.

In the list monad — Haskell’s implementation of nondeterministic
computations — join is implemented as concat. Remember that join
is supposed to flatten a container of containers — concat concatenates
a list of lists into a single list. return creates a singleton list:

instance Monad [] where
join = concat
return x = [x]

The bind operator for the list monad is given by the general formula:
fmap followed by join which, in this case gives:

as >>= k = concat (fmap k as)
Here, the function k, which itself produces a list, is applied to every

element of the list as. The result is a list of lists, which is flattened using
concat.

thtp: //math.andrej.com/2016/08/06/hask-is-not-a-category/
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From the programmer’s point of view, working with a list is eas-
ier than, for instance, calling a non-deterministic function in a loop, or
implementing a function that returns an iterator (although, in modern
C++3, returning a lazy range would be almost equivalent to returning a
list in Haskell).

A good example of using non-determinism creatively is in game
programming. For instance, when a computer plays chess against a hu-
man, it can’t predict the opponent’s next move. It can, however, gener-
ate a list of all possible moves and analyze them one by one. Similarly,
a non-deterministic parser may generate a list of all possible parses for
a given expression.

Even though we may interpret functions returning lists as non-
deterministic, the applications of the list monad are much wider. That’s
because stitching together computations that produce lists is a perfect
functional substitute for iterative constructs — loops — that are used
in imperative programming. A single loop can be often rewritten using
fmap that applies the body of the loop to each element of the list. The do
notation in the list monad can be used to replace complex nested loops.

My favorite example is the program that generates Pythagorean
triples — triples of positive integers that can form sides of right trian-
gles.

triples = do

z <-[1..]
x <= [1..z]
y <= [x..z]

guard (x*2 + y*2 == z*2)
return (x, y, z)

3http://ericniebler.com/2014/04/27/range—comprehensions/
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The first line tells us that z gets an element from an infinite list of posi-
tive numbers [1..]. Then x gets an element from the (finite) list [1. . z]
of numbers between 1 and z. Finally y gets an element from the list of
numbers between x and z. We have three numbers 1 < x < y < zat our
disposal. The function guard takes a Bool expression and returns a list
of units:

guard :: Bool -> [()]
guard True = [()]
guard False = []

This function (which is a member of a larger class called MonadP1lus) is
used here to filter out non-Pythagorean triples. Indeed, if you look at the
implementation of bind (or the related operator >>), you’ll notice that,
when given an empty list, it produces an empty list. On the other hand,
when given a non-empty list (here, the singleton list containing unit
L)), bind will call the continuation, here return (x, y, z), which
produces a singleton list with a verified Pythagorean triple. All those
singleton lists will be concatenated by the enclosing binds to produce
the final (infinite) result. Of course, the caller of triples will never be
able to consume the whole list, but that doesn’t matter, because Haskell
is lazy.

The problem that normally would require a set of three nested loops
has been dramatically simplified with the help of the list monad and the
do notation. As if that weren’t enough, Haskell let’s you simplify this
code even further using list comprehension:

triples = [(x, vy, z) | z <= [1..]
, x <= [1..z]
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, Yy <= [x..z]
, X*2 + y*2 == z*2]

This is just further syntactic sugar for the list monad (strictly speaking,
MonadPlus).

You might see similar constructs in other functional or imperative
languages under the guise of generators and coroutines.

Read-Only State

A function that has read-only access to some external state, or environ-
ment, can be always replaced by a function that takes that environment
as an additional argument. A pure function (a, e) -> b (where e is
the type of the environment) doesn’t look, at first sight, like a Kleisli
arrow. But as soon as we curry it to a -> (e -> b) we recognize the
embellishment as our old friend the reader functor:

newtype Reader e a = Reader (e -> a)

You may interpret a function returning a Reader as producing a mini-
executable: an action that given an environment produces the desired
result. There is a helper function runReader to execute such an action:

runReader :: Reader e a -=> e -> a
runReader (Reader f) e = f e

It may produce different results for different values of the environment.
Notice that both the function returning a Reader, and the Reader
action itself are pure.
To implement bind for the Reader monad, first notice that you have
to produce a function that takes the environment e and produces a b:
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ra >>= k = Reader (\e => ...)

Inside the lambda, we can execute the action ra to produce an a:

ra >>= k = Reader (\e -> let a = runReader ra e
in ...)

We can then pass the a to the continuation k to get a new action rb:

ra >>= k = Reader (\e -> let a = runReader ra e
rb =k a
in ...)

Finally, we can run the action rb with the environment e:

ra >>= k = Reader (\e -> let a = runReader ra e
rb = k a
in runReader rb e)

To implement return we create an action that ignores the environment
and returns the unchanged value.

Putting it all together, after a few simplifications, we get the follow-
ing definition:

instance Monad (Reader e) where
ra >>= k = Reader (\e -> runReader (k (runReader ra e)) e)
return x = Reader (\e -> x)

Write-Only State

This is just our initial logging example. The embellishment is given by
the Writer functor:
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newtype Writer w a = Writer (a, w)

For completeness, there’s also a trivial helper runWriter that unpacks
the data constructor:

runWriter :: Writer w a => (a, w)
runWriter (Writer (a, w)) = (a, w)

As we’ve seen before, in order to make Writer composable, w has to be
a monoid. Here’s the monad instance for Writer written in terms of the
bind operator:

instance (Monoid w) => Monad (Writer w) where
(Writer (a, w)) >»>=k = let (a', w') = runWriter (k a)
in Writer (a', w ‘mappend‘ w')
return a = Writer (a, mempty)

State

Functions that have read/write access to state combine the embellish-
ments of the Reader and the Writer. You may think of them as pure
functions that take the state as an extra argument and produce a pair
value/state as a result: (a, s) -> (b, s).After currying, we get them
into the form of Kleisli arrows a -> (s -> (b, s)), with the embel-
lishment abstracted in the State functor:

newtype State s a = State (s -> (a, s))

Again, we can look at a Kleisli arrow as returning an action, which can
be executed using the helper function:
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runState :: State s a -=> s -> (a, s)
runState (State f) s = f s

Different initial states may not only produce different results, but also
different final states.

The implementation of bind for the State monad is very similar to
that of the Reader monad, except that care has to be taken to pass the
correct state at each step:

sa >>= k = State (\s -> let (a, s') = runState sa s
sb = k a
in runState sb s')

Here’s the full instance:

instance Monad (State s) where
sa >>= k = State (\s -> let (a, s') = runState sa s
in runState (k a) s')
return a = State (\s -> (a, s))

There are also two helper Kleisli arrows that may be used to manipulate
the state. One of them retrieves the state for inspection:

get :: State s s
get = State (\s -> (s, s))

and the other replaces it with a completely new state:

put :: s -> State s ()
put s' = State (\s -=> ((), s"'))
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Exceptions

An imperative function that throws an exception is really a partial func-
tion — it’s a function that’s not defined for some values of its arguments.
The simplest implementation of exceptions in terms of pure total func-
tions uses the Maybe functor. A partial function is extended to a total
function that returns Just a whenever it makes sense, and Nothing
when it doesn’t. If we want to also return some information about the
cause of the failure, we can use the Either functor instead (with the
first type fixed, for instance, to String).

Here’s the Monad instance for Maybe:

instance Monad Maybe where
Nothing >>= k = Nothing
Just a >»>=k =k a
return a = Just a

Notice that monadic composition for Maybe correctly short-circuits the
computation (the continuation k is never called) when an error is de-
tected. That’s the behavior we expect from exceptions.

Continuations

12

It’s the “Don’t call us, we’ll call you!” situation you may experience after
a job interview. Instead of getting a direct answer, you are supposed to
provide a handler, a function to be called with the result. This style of
programming is especially useful when the result is not known at the
time of the call because, for instance, it’s being evaluated by another
thread or delivered from a remote web site. A Kleisli arrow in this case
returns a function that accepts a handler, which represents “the rest of

the computation™:
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data Cont r a = Cont ((a =>r) ->r)

The handler a -> r, when it’s eventually called, produces the result of
type r, and this result is returned at the end. A continuation is parame-
terized by the result type. (In practice, this is often some kind of status
indicator.)

There is also a helper function for executing the action returned by
the Kleisli arrow. It takes the handler and passes it to the continuation:

runCont :: Cont r a -=> (a =>r) =>r
runCont (Cont k) h = k h

The composition of continuations is notoriously difficult, so its han-
dling through a monad and, in particular, the do notation, is of extreme
advantage.

Let’s figure out the implementation of bind. First let’s look at the
stripped down signature:

>>=) :: ((@>r) >r) >

(a->Mmb->r)>r) ->
(b =->r) =>r)

Our goal is to create a function that takes the handler (b -> r) and
produces the result r. So that’s our starting point:

ka >>= kab = Cont (\hb -> ...)
Inside the lambda, we want to call the function ka with the appropriate

handler that represents the rest of the computation. We’ll implement
this handler as a lambda:
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runCont ka (\a -> ...)

In this case, the rest of the computation involves first calling kab with
a, and then passing hb to the resulting action kb:

runCont ka (\a -> let kb = kab a
in runCont kb hb)

Asyou can see, continuations are composed inside out. The final handler
hb is called from the innermost layer of the computation. Here’s the full
instance:

instance Monad (Cont r) where
ka >>= kab = Cont (\hb -> runCont ka (\a -> runCont (kab a) hb))
return a = Cont (\ha -> ha a)

Interactive Input

This is the trickiest problem and a source of a lot of confusion. Clearly,
a function like getChar, if it were to return a character typed at the key-
board, couldn’t be pure. But what if it returned the character inside a
container? As long as there was no way of extracting the character from
this container, we could claim that the function is pure. Every time you
call getChar it would return exactly the same container. Conceptually,
this container would contain the superposition of all possible charac-
ters.

If you’re familiar with quantum mechanics, you should have no
problem understanding this analogy. It’s just like the box with the
Schrodinger’s cat inside — except that there is no way to open or peek
inside the box. The box is defined using the special built-in I0 functor.
In our example, getChar could be declared as a Kleisli arrow:
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getChar :: () -> IO Char

(Actually, since a function from the unit type is equivalent to picking
a value of the return type, the declaration of getChar is simplified to
getChar :: IO Char.)

Being a functor, I0 lets you manipulate its contents using fmap. And,
as a functor, it can store the contents of any type, not just a character.
The real utility of this approach comes to light when you consider that,
in Haskell, I0 is a monad. It means that you are able to compose Kleisli
arrows that produce I0 objects.

You might think that Kleisli composition would allow you to peek
at the contents of the I0 object (thus “collapsing the wave function,” if
we were to continue the quantum analogy). Indeed, you could compose
getChar with another Kleisli arrow that takes a character and, say, con-
verts it to an integer. The catch is that this second Kleisli arrow could
only return this integer as an (I0 Int). Again, you'll end up with a su-
perposition of all possible integers. And so on. The Schrédinger’s cat is
never out of the bag. Once you are inside the I0 monad, there is no way
out of it. There is no equivalent of runState or runReader for the I0
monad. There is no runIO!

So what can you do with the result of a Kleisli arrow, the I0 object,
other than compose it with another Kleisli arrow? Well, you can return
it from main. In Haskell, main has the signature:

main :: I0 ()

and you are free to think of it as a Kleisli arrow:
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main :: () -> I0 ()

From that perspective, a Haskell program is just one big Kleisli arrow
in the I0 monad. You can compose it from smaller Kleisli arrows using
monadic composition. It’s up to the runtime system to do something
with the resulting I0 object (also called I0 action).

Notice that the arrow itself is a pure function — it’s pure functions
all the way down. The dirty work is relegated to the system. When it
finally executes the I0 action returned from main, it does all kinds of
nasty things like reading user input, modifying files, printing obnox-
ious messages, formatting a disk, and so on. The Haskell program never
dirties its hands (well, except when it calls unsafePerformIO, but that’s
a different story).

Of course, because Haskell is lazy, main returns almost immediately,
and the dirty work begins right away. It’s during the execution of the I0
action that the results of pure computations are requested and evaluated
on demand. So, in reality, the execution of a program is an interleaving
of pure (Haskell) and dirty (system) code.

There is an alternative interpretation of the I0 monad that is even
more bizarre but makes perfect sense as a mathematical model. It treats
the whole Universe as an object in a program. Notice that, conceptually,
the imperative model treats the Universe as an external global object,
so procedures that perform I/O have side effects by virtue of interact-
ing with that object. They can both read and modify the state of the
Universe.

We already know how to deal with state in functional programming
— we use the state monad. Unlike simple state, however, the state of
the Universe cannot be easily described using standard data structures.
But we don’t have to, as long as we never directly interact with it. It’s
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enough that we assume that there exists a type RealWorld and, by some
miracle of cosmic engineering, the runtime is able to provide an object
of this type. An I0 action is just a function:

type I0 a = RealWorld -> (a, RealWorld)

Or, in terms of the State monad:

type IO = State RealWorld
However, >=> and return for the I0 monad have to be built into the
language.

Interactive Output

The same 10 monad is used to encapsulate interactive output. RealWorld
is supposed to contain all output devices. You might wonder why we
can’t just call output functions from Haskell and pretend that they do
nothing. For instance, why do we have:

putStr :: String -> IO ()

rather than the simpler:

putStr :: String -> ()
Two reasons: Haskell is lazy, so it would never call a function whose
output — here, the unit object — is not used for anything. And, even if it

weren’t lazy, it could still freely change the order of such calls and thus
garble the output. The only way to force sequential execution of two
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functions in Haskell is through data dependency. The input of one func-
tion must depend on the output of another. Having RealWorld passed
between I0 actions enforces sequencing.

Conceptually, in this program:

main :: I0 ()

main = do
putStr "Hello "
putStr "World!"

the action that prints “World!” receives, as input, the Universe in which
“Hello ” is already on the screen. It outputs a new Universe, with “Hello
World!” on the screen.

Conclusion

Of course I have just scratched the surface of monadic programming.
Monads not only accomplish, with pure functions, what normally is
done with side effects in imperative programming, but they also do
it with a high degree of control and type safety. They are not with-
out drawbacks, though. The major complaint about monads is that they
don’t easily compose with each other. Granted, you can combine most
of the basic monads using the monad transformer library. It’s relatively
easy to create a monad stack that combines, say, state with exceptions,
but there is no formula for stacking arbitrary monads together.
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Monads Categorically

F YOU MENTION MONADS to a programmer, you'll probably end up

talking about effects. To a mathematician, monads are about alge-
bras. We’ll talk about algebras later — they play an important role in
programming — but first I'd like to give you a little intuition about their
relation to monads. For now, it’s a bit of a hand-waving argument, but
bear with me.

Algebra is about creating, manipulating, and evaluating expres-
sions. Expressions are built using operators. Consider this simple ex-
pression:

x?+2x+1

This expression is formed using variables like x, and constants like 1 or
2, bound together with operators like plus or times. As programmers,
we often think of expressions as trees.
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Trees are containers so, more generally, an expression is a container for
storing variables. In category theory, we represent containers as endo-
functors. If we assign the type a to the variable x, our expression will
have the type m a, where m is an endofunctor that builds expression
trees. (Nontrivial branching expressions are usually created using re-
cursively defined endofunctors.)

What’s the most common operation that can be performed on an
expression? It’s substitution: replacing variables with expressions. For
instance, in our example, we could replace X with y — 1 to get:

(y—12+2(y—1)+1

Here’s what happened: We took an expression of type m a and applied
a transformation of type a — m b (b represents the type of y). The result
is an expression of type m b. Let me spell it out:

ma— (a—>mb) >mb

Yes, that’s the signature of monadic bind.

That was a bit of motivation. Now let’s get to the math of the monad.
Mathematicians use di